MINI REVIEW: Citrus sinensis SEBAGAI BIOREDUKTOR DALAM GREEN SYNTHESIS NANOPARTIKEL

  • Irfan Ashari Hiyahara Laboratorium Kimia Anorganik Jurusan Kimia FMIPA Universitas Mulawarman
  • Noor Hindryawati Laboratorium Kimia Anorganik Jurusan Kimia FMIPA Universitas Mulawarman
  • Husna Syaima Laboratorium Kimia Anorganik Jurusan Kimia FMIPA Universitas Mulawarman
  • Muhammad Marion Akbar Laboratorium Kimia Anorganik Jurusan Kimia FMIPA Universitas Mulawarman
  • Nur Fadhilah Duratulhikmah Laboratorium Kimia Anorganik Jurusan Kimia FMIPA Universitas Mulawarman
  • Narundana Perdana Putra Laboratorium Kimia Anorganik Jurusan Kimia FMIPA Universitas Mulawarman
  • Siti Aprilia Wulandari Laboratorium Kimia Anorganik Jurusan Kimia FMIPA Universitas Mulawarman
  • Zarra Udyani Larasati Laboratorium Kimia Anorganik Jurusan Kimia FMIPA Universitas Mulawarman
  • Rahayuningsih Rahayuningsih Laboratorium Kimia Anorganik Jurusan Kimia FMIPA Universitas Mulawarman
  • Isah Waliah Indriani Laboratorium Kimia Anorganik Jurusan Kimia FMIPA Universitas Mulawarman

Abstract

Green synthesis is an eco-friendly approach that provides a viable alternative to traditional physical and chemical methods for the production of nanoparticles. This technique employs non-toxic and safe materials, such as plants, microorganisms, algae, bacteria, yeast, and fungi, to generate stable and less toxic nanoparticles. Citrus sinensis, commonly known as sweet orange, is a plant that contains various active compounds. These bioactive compounds can be extracted and used as bioreductants in green synthesis of nanoparticles. This mini review aimed to provide an overview of the current state of research on the utilization of Citrus sinensis as a bioreductant in the production of nanoparticles. A systematic search strategy was employed to identify research articles that met the criteria of discussing green synthesis of nanoparticles with Citrus sinensis as a bioreductant. The nanoparticles produced using Citrus sinensis extract can be either metal nanoparticles or metal oxide nanoparticles. The review highlights the distribution of nanoparticles produced with Citrus sinensis extract, their applications, and the extraction process of Citrus sinensis commonly employed in green synthesis of nanoparticles. Hopefully this review serves as a useful reference for researchers and practitioners who are interested in employing the Citrus sinensis plant as a bioreductant in the green synthesis of nanoparticles.

Keyword
Citrus sinensis, Green Synthesis, Nanoparticle, Extraction

Downloads

Download data is not yet available.

References

[1]Nair, G. M., Sajini, T., & Mathew, B. (2022). Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications. In Talanta Open (Vol. 5). Elsevier B.V. https://doi.org/10.1016/j.talo.2021.100080

[2]Zeghoud, S., Hemmami, H., ben Seghir, B., ben Amor, I., Kouadri, I., Rebiai, A., Messaoudi, M., Ahmed, S., Pohl, P., & Simal-Gandara, J. (2022). A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications. In Materials Today Communications (Vol. 33). Elsevier Ltd. https://doi.org/10.1016/j.mtcomm.2022.104747

[3]Wedamulla, N. E., Fan, M., Choi, Y. J., & Kim, E. K. (2022). Citrus peel as a renewable bioresource: Transforming waste to food additives. In Journal of Functional Foods (Vol. 95). Elsevier Ltd. https://doi.org/10.1016/j.jff.2022.105163

[4]Patil, S. P., Chaudhari, R. Y., & Nemade, M. S. (2022). Azadirachta indica leaves mediated green synthesis of metal oxide nanoparticles: A review. In Talanta Open (Vol. 5). Elsevier B.V. https://doi.org/10.1016/j.talo.2022.100083

[5]Patil, S. P. (2020). Ficus carica assisted green synthesis of metal nanoparticles: A mini review. In Biotechnology Reports (Vol. 28). Elsevier B.V. https://doi.org/10.1016/j.btre.2020.e00569

[6]Tiloke, C., Anand, K., Gengan, R. M., & Chuturgoon, A. A. (2018). Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer. In Biomedicine and Pharmacotherapy (Vol. 108, pp. 457–466). Elsevier Masson SAS. https://doi.org/10.1016/j.biopha.2018.09.060

[7]Chugh, R., & Kaur, G. (2022). A mini review on green synthesis of nanoparticles by utilization of Musa- balbisiana waste peel extract. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2022.11.189

[8]Logeswari, P., Silambarasan, S., & Abraham, J. (2015). Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society, 19(3), 311–317. https://doi.org/10.1016/j.jscs.2012.04.007

[9]Annu, Ahmed, S., Kaur, G., Sharma, P., Singh, S., & Ikram, S. (2018). Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial, antioxidant and cytotoxic activities. Journal of Applied Biomedicine, 16(3), 221–231. https://doi.org/10.1016/j.jab.2018.02.002

[10]Nava, O. J., Soto-Robles, C. A., Gómez-Gutiérrez, C. M., Vilchis-Nestor, A. R., Castro-Beltrán, A., Olivas, A., & Luque, P. A. (2017). Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. Journal of Molecular Structure, 1147, 1–6. https://doi.org/10.1016/j.molstruc.2017.06.078

[11]Anwar, Y., & Alghamdi, K. M. (2020). Imparting antibacterial, antifungal and catalytic properties to cotton cloth surface via green route. Polymer Testing, 81. https://doi.org/10.1016/j.polymertesting.2019.106258

[12]Amanulla, A. M., & Sundaram, R. (2019). ScienceDirect Green synthesis of TiO 2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. www.sciencedirect.com

[13]Jahan, I., Erci, F., & Isildak, I. (2021). Facile microwave-mediated green synthesis of non-toxic copper nanoparticles using Citrus sinensis aqueous fruit extract and their antibacterial potentials. Journal of Drug Delivery Science and Technology, 61. https://doi.org/10.1016/j.jddst.2020.102172

[14]Fall, A., Ngom, I., Bakayoko, M., Sylla, N. F., Elsayed Ahmed Mohamed, H., Jadvi, K., Kaviyarasu, K., & Ngom, B. D. (2019). Biosynthesis of TiO2nanoparticles by using natural extract of Citrus sinensis. Materials Today: Proceedings, 36, 349–356. https://doi.org/10.1016/j.matpr.2020.04.131

[15]Gao, Y., Xu, D., Ren, D., Zeng, K., & Wu, X. (2020). Green synthesis of zinc oxide nanoparticles using Citrus sinensis peel extract and application to strawberry preservation: A comparison study. LWT, 126. https://doi.org/10.1016/j.lwt.2020.109297

[16]Sharanappa, A., Shet, A. R., Patil, L. R., Hombalimath, V. S., & Kadapure, S. (2020). Biosynthesis of silver nanoparticles using citrus sinensis peel extract and their application as antibacterial agent. International Journal of Research in Pharmaceutical Sciences, 11(3), 4726–4732. https://doi.org/10.26452/ijrps.v11i3.2762

[17]Wicaksono, W. P., Kadja, G. T. M., Amalia, D., Uyun, L., Rini, W. P., Hidayat, A., Fahmi, R. L., Nasriyanti, D., Leun, S. G. V., Ariyanta, H. A., & Ivandini, T. A. (2020). A green synthesis of gold–palladium core–shell nanoparticles using orange peel extract through two-step reduction method and its formaldehyde colorimetric sensing performance. Nano-Structures and Nano-Objects, 24. https://doi.org/10.1016/j.nanoso.2020.100535

[18]Yashni, G., Al-Gheethi, A., Radin Mohamed, R. M. S., Dai-Viet, N. V., Al-Kahtani, A. A., Al-Sahari, M., Nor Hazhar, N. J., Noman, E., & Alkhadher, S. (2021). Bio-inspired ZnO NPs synthesized from Citrus sinensis peels extract for Congo red removal from textile wastewater via photocatalysis: Optimization, mechanisms, techno-economic analysis. Chemosphere, 281. https://doi.org/10.1016/j.chemosphere.2021.130661

[19]Chen, F., Zheng, Q., Li, X., & Xiong, J. (2022). Citrus sinensis leaf aqueous extract green-synthesized silver nanoparticles: Characterization and cytotoxicity, antioxidant, and anti-human lung carcinoma effects. Arabian Journal of Chemistry, 15(6). https://doi.org/10.1016/j.arabjc.2022.103845

[20] Gao, L., Mei, S., Ma, H., & Chen, X. (2022). Ultrasound-assisted green synthesis of gold nanoparticles using citrus peel extract and their enhanced anti-inflammatory activity. Ultrasonics Sonochemistry, 83. https://doi.org/10.1016/j.ultsonch.2022.105940
Published
2023-03-14
How to Cite
HIYAHARA, Irfan Ashari et al. MINI REVIEW: Citrus sinensis SEBAGAI BIOREDUKTOR DALAM GREEN SYNTHESIS NANOPARTIKEL. JURNAL ATOMIK, [S.l.], v. 8, n. 1, p. 17-22, mar. 2023. ISSN 2549-0052. Available at: <http://jurnal.kimia.fmipa.unmul.ac.id/index.php/JA/article/view/1202>. Date accessed: 19 apr. 2024.
Section
Artikel