ANTIMICROBIAL ACTIVITY OF BACTERIAL CELLULOSE MODIFIED WITH PLANT EXTRACTS

  • Riza Apriani Garut University
  • Nina Utami Garut University

Abstract

Bacterial cellulose (BC) is utilized in numerous industries, including the cosmetic, biomedical, and packaging industries. Nonetheless, BC lacks antibacterial activity and must be combined with antimicrobial agents, including plant extracts. This review aims to give information on the antibacterial activity of BC that has been modified by the addition of plant extracts. The method used in this study is article review. Articles were selected from Q1-Q3 category international journals published within the recent decade. Based on the results, extracts of rhizomes, ethanol extracts of gwarri stems and leaves, oregano leaves, rosemary leaves, lovage leaves, parsley leaves, green tea leaves, rosella petals, and red and pink variants of hibiscus flowers, bitter melon seeds, gletang leaves, arabica coffee, and andaliman fruit, temu Kunci dimethyl sulfoxide extract, mulberry leaf NaOH extract, pomegranate skin water extract, and rosemary leaves have been used to modify BC. Antimicrobial activity showed the most significant increase in BC-modified ethanol extract of rosella petals at a concentration of 500 ppm with an OD600 of 0% against Pseudomonas aeruginosa. FTIR and SEM investigations of pure BC and BC modified with plant extracts revealed variations in functional group content and three-dimensional fibrillar network structure.

Keyword
Antimicrobial activity, bacterial cellulose, plant extracts

Downloads

Download data is not yet available.

References

1] Stumpf, T. R., Yang, X., Zhang, J., Cao, X. (2016). In situ and ex situ modification of bacterial cellulose for application in tissue engineering. Materials Science and Engineering C, 32374-8.
[2] Indrianingsih, A. W., Rosyida, V. T., Apriyana, W., Hayati, N. S., Darsih, C., Nisa, K., Ratih, D. (2020). Antioxidant and antibacterial properties of bacterial cellulose- Indonesian plant extract composites for mask sheet. Journal of Applied Pharmaceutical Science, I10(07):037-042.
[3] Jozala, A. F., Pertile, R. A. N., Santos, C., Ebinuma, V. (2014). Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Applied Microbiology and Biotechnology, 99: 1181-1190.
[4] Fatima, A., Yasir, S., Khan, M. S., Manan, S., Ullah, M. W., UI-Islam, M. (2021). Plant extract-loades bacterial cellulose composite membrane for potential biomedical applications. Journal of Bioresources and Bioproducts. 26-32.
[5] Siddhan, P. K. S., Basavaraj, J. (2016). Biosynthesis of bacterial cellulose imparting antibacterial property through novel Bio-Agents. Research Journal of Biotechnology. 11(9).
[6] Mosiewicki, M. A., Marcovich, N. E., Aranguren, M. I. (2011). Charecterization of fiber surface treatments in natural fiber composites by infrared and Raman spectroscopy – interface engineering of natural fiber composite for maximum performance (interface engineering of natural fiber composite for maximum performance) ed. Zaferopoulos N, (Cambridge: Woodhead Publishing) pp: 117-45.
[7] Koboyashi, M., Zhu, Y., Nichols, N., Lampen, O. (1987). A second regulatory encoding a penicillin binding protein reguired for induction of betalactamase. J of Bacteriology, 169(9):3873-76.
[8] Moradian, S., Almasi, H., Moin, S. (2017). Development of bacterial cellulose-based active membranes containing herbal extracts for shelf life extension of button mushrooms (Agaricus bisporus). J Food Process Preserv. (3):1–13.
[9] Jonsirivilai, B., Torgbo, S., Sukyai, P. (2022). Mutifunctional filter membrane for face mask using bacterial cellulose for highly efficient particulate matter removal. Cellulose, 29(21): 1-20.
[10] Ongwisespaiboon, O., Jiraungkoorskul, W. (2017). Fingerroot, Boosenbergia rotunda and its aphrodisiac activity. Pharmacognosy Review, 11(21):27.
[11] Hayati, Z., Yulia, W., Karmil, T. F., Azmy, A. (2012). Anti-bacterial activity of rosella flowers extract (Hibiscus sabdariffa linn) ininhibiting bacterial growth methicillin-resistant Staphylococcus aureus. Uninet biosciences conference, (2)1:22-24.
[12] Chen, J., Chen, C., Xunran, X. G. L., Hao, Q., Sun, D. (2019). In situ preparation of bacterial cellulose with antimicrobial properties from bioconversion of mulberry leaves. Carbohydrate Polymers, 170-175.
[13] Sajjad, W., He, F., Ullah, M. W., Ikram, M., Shah, S., Khan, R., Khan T., Khalid, A., Yang, G., Wahid, F. (2020). Fabrication of bacterial cellulose-curcumin nanocomposite as a novel dressing for partial thickness skin burn. Front. Bioengineering and Biotechnology, 8: 553037.
[14] El-Wakil, N. A., Hassan, E. A., Hassan, M. L., El-Salam, S. S. (2019). Bacterial cellulose/phytochemical’s extract biocomposites for potential ective wound dressings. Environmental Science and Pollution Research. 26(26):26529–41.
[15] Bodea, I. M., Catunescu, G. M., Pop, C. R., Fit, N. I., David, A. P., Dudescu, M. C., Stanila, A., Rotar, A. M., Beteg, F. L. (2022). Antimicrobial properties of bacterial cellulose films enriched with bioactive herbal extracts obtained by microwave-assisted extraction. Polymers, 14: 1435.
[16] Majdanik, M. M., Kepa, M., Wojtyczka, R. D., Idzik, D., Wasik, J. T. (2018). Phenolic compound diminish antibiotic resistance of Staphylococcus aureus clinical strain. Int J Environ Res Public Health, 15(10): 2321.
[17] Adamczak, A., Ozarowski, M., Karpinski, T. M. (2020). Curcumin, a natural antimicrobial agent with strain-spesific activity. Pharmaceuticals, 13(7):153.
[18] Bandaranayake, W. M. (2002). Bioactivities, bioactive compound and chemical constituents of mangrove plant. Wetland ecology and management, 10:421-452.
[19] Mirzoeva, O. K., Grishanin, R. N., Calder, P. C. (1997). Antimicrobial action of propolis and some of its components: the effect on growth, membrane potential and motility of bacteria. Microbial, 152(5):239-46.
[20] Di carlo, D., Macolo, N., Izzo, A. A., Capasso, F. (1999). Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life sci, 64(4):337-53.
[21] Martinez-Tome, M., Jimenez-Monreal, A. M., Garcia-jimenez, L., Almela, L., Garcia-Diz, L., Mariscal-Arcas, M., Murcia, M. A. (2021). Assement of antimicrobial activity of coffe brewed in three different ways from different origins. Eur Food Res Technol, 223:497-505.
[22] Wijaya, W., Ridwan, R. D., Budi, H. S. (2017). Antibacterial ablility of Arabica (coffe Arabica) and robusta (coffe canenphora) coffe extract on Lactobacillus acidophilus, Dental Journal. 49(2):99.
[23] Xie, Y., Chen, J., Xiao, A., Liu, L. (2017). Antibacterial activity of olyphenols: structure-activity relationship and influence of hyperglycemic condition. 22(11):1913.
[24] Westfall, A. (2015). Evaluation of the efficacy of anthocyanins ada biologically active ingredients in lipstick formulation. Thesis, Ohio: Ohio State University.
[25] Zhang, Y., Wu, Y. T., Zheng, W., Han X. X. (2017). The antibacterial activity and antibacterial mechanism of polysaccharide from Cordyceps cicadae. Journal of functional foods, 38:273-279.
Published
2023-05-26
How to Cite
APRIANI, Riza; UTAMI, Nina. ANTIMICROBIAL ACTIVITY OF BACTERIAL CELLULOSE MODIFIED WITH PLANT EXTRACTS. JURNAL KIMIA MULAWARMAN, [S.l.], v. 20, n. 2, p. 105-119, may 2023. ISSN 2476-9258. Available at: <http://jurnal.kimia.fmipa.unmul.ac.id/index.php/JKM/article/view/1203>. Date accessed: 20 apr. 2024. doi: https://doi.org/10.30872/jkm.v20i2.1203.
Section
Artikel