STUDI KOMPUTASI REAKSI ADSORBSI DISOSIASI GAS O 2 PADA PERMUKAAN Pt-Fe DENGAN METODE TEORI FUNGSI KERAPATAN

  • Darmin - Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman
  • Rahmat Gunawan Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman
  • Aman Sentosa Panggabean Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman

Abstract

Platinum purpose as a catalysts on the cathode in a fuel cell hydrogen system gets a role in disconnection of O 2 molecules. Power adsorption and dissociation of O 2 molecules determined the effectiveness and efficiency of the nature of catalyst that is utilized. All thid time metal is considered the most effective as a catalyst in fuel cells hydrogen is Pt. After be done investigation and calculation is known about platinum and iron alloy (Pt-Fe) can be utilized as a catalyst that has approached the effectiveness and efficiency of pure Pt metal. One of the way to determine the effectiveness and efficiency of the catalyst Pt-Fe alloys by calculating the value of the potential energy surface (PES). PES value calculation is done using density functional theory calculations. Analysiss result point out the value of the potential energy surface (PES) O 2 molecules in the Pt-Fe metal fusion for -929.8341 Ry with optimal distance of 2.4908 A of Pt-Fes metal surface and distances among O atoms as big as 3.3211 A.

Downloads

Download data is not yet available.

References

Caretto, L. 2002. Fuel Cell. Mechanical Engineering 694C Seminar in Energy and Policy. California State University Nerthridge. November 13, 2002.

Cook, B. 2001. An Introduction to Fuel Cells and Hydrogen Tehonology. Heliocentris 3652 West 5th Avenue, Vancouver, BC V6R-1S2, Canada.

EG&G Services Parson,Inc., 2000, Fuel Cell Handbook, Fifth Edition, U.S. Departmen of Energy Office of Fossil Energy National Energy Technology laboratory.

EG&G Tehical Services, Inc. 2004. Fuel Cell Handbook (Seventh Edition). Under Contract No. DE-Am26-99FT40575. U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory P.O.Box 880, Morgantown, West Virginia 26507-0880.

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., DalCorso, A., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Samos, L. M., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., dan Wentzcovitch, R. M., (2009): Quantum Espresso: a modular and open-source software project for quantum simulations of materials, Cond. Mat. Mtrl. Sci., 2, 1–36.

Haile, Sissiana, M. 2003. Fuel cell material and component. Department of Material Science and of Chemical Engineering, California Institute of Technology, 138-78, Pasadena.

Ja’far, M. 2009. “Energynomics ideologi baru dunia”. Jakarta : PT Gramedia Pustaka Utama. ISBN: 978-979-22-5028-2.

Rayment, C dan Sherwin, S. 2003. Introduction to Fuel Cell Technology. Department of Aerospace and Mechanical Engineering University of Notre Dame, IN 46556, U.S.A.

Remick, Robert. 2010. Molten Carbonate and phosphoric Acid Stationary Fuel Cells: Overview and Gap analysis. Technical Report NREL/TP-560-49072, for the periode september, 2010, Prepared under Task No. H278.7210.

Setiawan, I; Handayani, M; Dwiantoro, I; Irawan, D; Siswayanti, B. 2007. Pemanfaatan teknologi fuel cell sebagai alternative penyediaan energi bersih di Indonesia. Lembaga Ilmu Pengetahuan Indonesia. Pusat Penelitian Metalurgi. Volume 22, No. 2.

Shevlin, S. A., dan Guo, Z. X., (2009): Density functional theory simulations of complex hydride and carbon-based hydrogen storage materials, Chem. Soc. Rev., 38, 211–225.

Suhada, H. 2001. Fuel Cell Sebagai Penghasil Energi Abad 21. Jurnal Teknik Mesin, Vol. 3, No. 2, Oktober 2001: 92-100.

Vondele, J. V., Iannuzzi, M., dan Hutter, J., (2006): Large Scale Condensed Matter Calculations using the Gaussian
and Augmented Plane Waves Method, Lect. Notes Phys., 703,
Published
2016-04-26
How to Cite
-, Darmin; GUNAWAN, Rahmat; PANGGABEAN, Aman Sentosa. STUDI KOMPUTASI REAKSI ADSORBSI DISOSIASI GAS O 2 PADA PERMUKAAN Pt-Fe DENGAN METODE TEORI FUNGSI KERAPATAN. PROSIDING SEMINAR KIMIA, [S.l.], apr. 2016. Available at: <http://jurnal.kimia.fmipa.unmul.ac.id/index.php/prosiding/article/view/127>. Date accessed: 31 mar. 2020.
Section
Artikel

Keywords

Fuel cell hydrogen, Adsorbtion dissociation O 2 , PES, Density functinal theory (DFT)