Synthesis and Characterization of Copper(II) Oxide (CuO-NP) Nanoparticles using Chemical Precipitation Method

Charlena*, Sri Sugiarti, Dila Arinysyah*

*Department of Chemistry, Faculty of Mathematics and Natural Science, Institut Pertanian Bogor, Bogor, Indonesia.
* Corresponding Author: charlena@apps.ipb.ac.id

ABSTRACT
This study aims to optimize the calcination temperature and see the effect of adding surfactant on the bandgap, particle size, crystallinity level of CuO nanoparticles (CuO-NP), and the activity of CuO nanoparticles as an antibacterial agent. CuO-NP was successfully synthesized using the chemical precipitation method with variations in calcination temperature of 400, 600, and 800 °C with NaOH as a precipitating agent. The synthesized nanoparticles were further characterized using a UV-Vis, XRD, and SEM-EDX spectrophotometer. The value of the CuO-NP bandgap increases with increasing temperature. The bandgap gets bigger when the absorbance value gets smaller. Increasing the calcination temperature causes the crystal size of CuO-NP to become larger. The best level of crystallinity of CuO-NP was obtained at 68.31% with a calcination temperature of 600 °C. Adding 1% PVP did not significantly prevent agglomeration between CuO-NP particles, thereby increasing the size of CuO-NP particles.

This is an open-access article under the CC-BY-SA license.

1. Introduction
At the end of 2019, the world was shocked by the identification of a new virus called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), commonly called COVID-19. The COVID-19 virus can infect the respiratory tract. The use of masks is, of course, highly recommended as an effort to prevent transmission from infected people but is not clinically detected [1]. The filtration power of masks can be increased by adding metal oxide components on the nanometer scale (nanoparticles). Some metal oxide nanoparticles have antibacterial [2] and antiviral [3] activities. Metal oxide nanoparticles that can be used as antibacterial and antiviral agents are TiO$_2$, ZnO, CuO, and MgO nanoparticles. Besides functioning as antibacterial and antiviral agents, nanoparticles can also be widely applied in sensors, bio-medical, catalysts, agriculture, electronics, and energy [4].

Nanoparticle synthesis is done to modify the particle size to a nanometer scale size of less than 100 nm so that similar bulk materials can produce different properties and functions [5]. Nano-sized materials will have specific characteristics that depend on their size, distribution, morphology and phase [6]. Copper(II) oxide (CuO) nanoparticles are one of the many metal oxide compounds that have been synthesized because they have the characteristics of a p-type semiconductor, have a monoclinic structure, have a reasonably narrow energy band gap of around 1.2 eV [7], and have good catalytic activity and selectivity [8]. CuO nanoparticles are widely used because they are cheaper than silver or other metal nanoparticles. CuO nanoparticles can be produced by chemical synthesis in the laboratory.

The methods commonly used to synthesize copper nanoparticles are chemical and physical. The processes of the two ways include electrochemical, hydrothermal, sol-gel, chemical
Charlene et al. (Synthesis and...)
with the basic principle of material deposition with the help of a precipitating agent. The precursor CuCl₂·2H₂O is used as the base material for copper. CuO nanoparticles are formed by the decomposition of CuCl₂·2H₂O precursors into Cu(OH)₂ when the solution has reached saturation point with the help of a precipitating agent. The precipitating agent can be an alkaline hydroxide base, such as KOH and NaOH. Cu(OH)₂ will decompose to CuO at around 80 °C.

The precipitation reaction can be seen visually when the green CuCl₂·2H₂O precursor solution changes colour slowly to blue, thickening, and gradually darkening to black as the reaction progresses. The description of the temperature when the reaction is taking place, will make the reaction go faster because the particles will decompose more quickly as the reaction temperature increases. The reaction for forming CuO nanoparticles with the initial precursor CuCl₂·2H₂O occurs based on the reaction equations (1) and (2).

\[
\text{CuCl}_2\cdot2\text{H}_2\text{O}(aq) + 2\text{NaOH}(aq) \rightarrow \text{Cu(OH)}_2(s)↓ + 2\text{NaCl}(aq) \tag{1}
\]
\[
\text{Cu(OH)}_2(s) \rightarrow \text{CuO}(s) + \text{H}_2\text{O}(g) \tag{2}
\]

CuO products were calcined at 400, 600, and 800 °C. Visually, the outcome of CuO nanoparticles after being calcined at 800 °C has different results with the same two treatments, as shown in Figure 1.

Fig 1. Calcination results of CuO nanoparticles at 800 °C without the addition of PVP (A) and the addition of PVP (B)

Product A in Figure 1 is a CuO nanoparticle, having the same results as product CuO-NP calcined at different temperatures. Product B, nanoparticles with the addition of PVP, looks like a blue color around the product in the crucible. The resulting blue color is presumably because the PVP structure used was damaged when the calcination temperature was increased to 800 °C, so it can be interpreted that the best temperature for making CuO nanoparticles with the addition of PVP is at a maximum temperature of 600 °C. Temperature plays an essential role in the purity and size of the resulting product. The higher the temperature, the better the level of product purity. According to the report by Luna et al. (2015) [8], an increase in calcination temperature will result in a larger particle size because it tends to undergo agglomeration.

Agglomeration can be prevented by adding surface-active compounds (surfactants) so that stabilization occurs during the reaction. Surfactants can be used as a steric barrier, thereby minimizing the occurrence of agglomeration. The surfactants used usually have hydrophilic heads and hydrophobic tails. The surface of the nanoparticles will absorb the hydrophilic portion of the surfactant, and the hydrophobic portion will provide steric repulsion to prevent agglomeration. The surfactant used in this study was polyvinyl pyrrolidone (PVP). The highly polar amide group of PVP will stick to the surface of the nanoparticles to protect against agglomeration.

3.2. UV-Vis Spectrum of Copper(II) Oxide Nanoparticles

Characterization using a UV-Vis spectrophotometer is expressed as a relationship curve between the wavelength (nm) and the absorbance value.
Figure 2 shows the UV spectrum of all CuO nanoparticle samples treated at different calcination temperatures. Sample A is a CuO particle, and sample B is a CuO particle with the addition of PVP surfactant.

Table 1. Maximum wavelength of CuO nanoparticles

<table>
<thead>
<tr>
<th>Samples</th>
<th>λmax (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>248</td>
</tr>
<tr>
<td>A2</td>
<td>251</td>
</tr>
<tr>
<td>A3</td>
<td>263</td>
</tr>
<tr>
<td>A4</td>
<td>260</td>
</tr>
<tr>
<td>B1</td>
<td>245</td>
</tr>
<tr>
<td>B2</td>
<td>248</td>
</tr>
<tr>
<td>B3</td>
<td>272</td>
</tr>
<tr>
<td>B4</td>
<td>272</td>
</tr>
</tbody>
</table>

Based on the results obtained by testing using a UV-Vis spectrophotometer, the absorbance value and maximum wavelength value (λmax) of the CuO nanoparticles are known. The resulting λmax value varies from sample to sample (Table 1). There was a shift in λmax as the calcination temperature increased. The λmax shift occurs due to a change in the crystal size of the CuO nanoparticles. According to Rahayu et al. (2020) [13], an increase in λmax indicates an increasing size of nanoparticles, and vice versa; when the value of λmax falls, the size of the nanoparticles gets smaller. The data generated from the UV-Vis results can be used to find the energy bandgap of CuO nanoparticles. The bandgap is a particle’s minimum energy to move or excite electrons from the valence band to the conduction band [14]. Bandgap values can be found using the tauc plot method. Based on Figure 3, the bandgap values of the resulting CuO samples are different and tend to experience an increase in bandgap values with increasing temperature.
Based on the results, the bandgap values of sample A and sample B are similar. There is an anomaly in the bandgap value of sample B4 (Table 2), where the resulting bandgap is smaller than the bandgap value of sample B3.

Table 2. Bandgap values on gap energy

<table>
<thead>
<tr>
<th>Samples</th>
<th>Temperature (°C)</th>
<th>Gap Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuO</td>
<td>105</td>
<td>3.775</td>
</tr>
<tr>
<td>CuO-PVP</td>
<td>105</td>
<td>3.778</td>
</tr>
<tr>
<td>CuO</td>
<td>400</td>
<td>3.801</td>
</tr>
<tr>
<td>CuO-PVP</td>
<td>400</td>
<td>3.809</td>
</tr>
<tr>
<td>CuO</td>
<td>600</td>
<td>3.880</td>
</tr>
<tr>
<td>CuO-PVP</td>
<td>600</td>
<td>3.990</td>
</tr>
<tr>
<td>CuO</td>
<td>800</td>
<td>3.918</td>
</tr>
<tr>
<td>CuO-PVP</td>
<td>800</td>
<td>3.937</td>
</tr>
</tbody>
</table>

This difference is generated because sample B4 has two plot peaks for bandgap values. The two plot peaks are likely due to size and morphology, and the inhomogeneous sample B4 resulted in two dominant sizes. The difference in bandgap can be caused by the absorbance value obtained—the increase in calcination temperature results in a greater value of the resulting bandgap. The results of the bandgap values obtained are contrary to the theory, which states that the higher the temperature, the smaller the bandgap values because the particle size will increase with agglomeration. The increase in the bandgap value, as the calcination temperature increases, can occur due to the resulting quantum particle effect [15], the primary material for making nanoparticles, the resistivity of the material, and the quality of the product layer produced [16]. This can be caused by electrons that can move freely in the conduction band and accelerate CuO's conductivity [17]. Based on the results, it can be interpreted that the CuO nanoparticles in this study belong to an insulator-type material because the resulting bandgap is more than 3 eV, where the bandgap value of semiconductor materials ranges from 1–3 eV [18].

3.3. Diffractogram of Copper(II) Oxide Nanoparticles

Characterization using XRD is shown in Figure 3. The diffraction peaks indicated that the tested particle had a diffraction pattern distribution of CuO (tenorite) nanoparticles. The diffraction resulting from the three CuO samples tested is very visible, and each sample has diffraction characteristics that are not much different.
Each crystalline phase has its diffractogram arrangement and characteristics. The crystal structure formed can be identified by matching each peak that appears on the diffractogram with the Joint Committee Powder Diffraction Standard (JCPDS) data. Strong diffraction of CuO nanoparticles and Miller indices (hkl) was read on the diffractogram at an angle of 2θ 32.4° (110); 35.4° (111); 38.6° (111); 48.6° (202); 53.4° (020); 58.2° (202); 61.4° (113); 66.1° (311); 67.9° (220); and 75.1° (222). The diffraction read indicated that the CuO nanoparticles had a monoclinic structure (Figure 5) with a = 4.685; b = 3.423; and c = 5.132 according to data on JCPDS #41-0254 and #48-1548.

From the diffractogram in Figure 4, there are diffraction patterns of impurities such as salt and metals such as iron (Fe) and cobalt (Co) which are read on the diffractogram with low intensity. Diffraction from contaminants that are read, the intensity decreases with increasing temperature. Crystal size apparent crystal size (ACS) uses the Debye–Scherrer equation. The ACS results of CuO nanoparticles are presented in Table 3.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Temperature (°C)</th>
<th>Crystal Size (nm)</th>
<th>Crystallinity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuO·PVP</td>
<td>600</td>
<td>30.43</td>
<td>68.31</td>
</tr>
<tr>
<td>CuO·PVP</td>
<td>800</td>
<td>34.56</td>
<td>63.65</td>
</tr>
<tr>
<td>CuO</td>
<td>800</td>
<td>33.47</td>
<td>66.69</td>
</tr>
</tbody>
</table>

Commented [HS1]: is there any citation for the picture?
The results of ACS experienced an increase in crystal size along with the rise in the given calcination temperature. However, the results obtained are still on the nanoparticle scale and have the potential to be used as coatings for masks, which in the study of El-Nahhal et al. (2016) [20], CuO nanoparticles with a size of 50 nm were successfully coated on the surface of cotton and could fight bacteria well. The increase in crystal size is due to the agglomeration tendency of CuO nanoparticles. Agglomeration occurs because the crystallization rate of CuO nanoparticles increases rapidly, so the movement between particles becomes more reactive with increasing temperature [21].

Samples with a calcination temperature of 800 °C have different results. Sample B4 is a sample of CuO nanoparticles treated with the addition of PVP surfactant, which has a larger crystal size than sample A4 which is a sample of CuO nanoparticles. However, nanoparticles treated at 600 °C with the addition of PVP had smaller crystal sizes compared to CuO nanoparticles in the report by Luna et al. (2015) [8], in which the crystal size obtained was in the range of 32.5 nm with the same starting material and temperature treatment.

The best level of crystallinity of CuO nanoparticles was obtained in sample B3 at 600 °C. The level of crystallinity decreased at 800 °C calcination temperature. The decrease in the level of CuO crystallinity is due to the reduced intensity on the diffractogram. The level of crystallinity indicates that the arrangement of atoms in crystal particles has a regular and repeating shape in 3-dimensional space. Sample B3 is the sample that has the highest diffractogram intensity. According to Sundari et al. (2018) [22], the level of crystallinity with a high intensity of CuO nanoparticles will have reasonably good crystallinity.

3.4. Morphology of Copper(II) Oxide Nanoparticles

TDS adalah terlarutnya zat padat yang biasanya disebabkan oleh bahan anorganik berupa ion, senyawa, dan koloid di dalam air [22]. Hasil pengukuran TDS air gambut setelah proses adsorpsi ditampilkan pada Gambar 4.

The morphology of CuO nanoparticles was carried out using a scanning electron microscope (SEM) instrument. Figure 6 is the SEM result of a sample of CuO nanoparticles treated with a 600 °C calcination temperature.

![Fig 6. Morphology of CuO nanoparticles at calcination temperature 600 °C](image)

SEM analysis was performed at 25000× magnification. The shape or morphology of the CuO nanoparticles looks similar to a monoclinic structure that is evenly distributed and has a uniform shape. The particle size obtained from the SEM results has large particle size, presumably due to the agglomeration of CuO nanoparticles. Agglomeration occurs due to buildup between particles caused by the absence of a steric barrier between particles when the temperature increases. The agglomeration tendency of each particle is shown in Figure 6, which can result in a larger particle size. The elemental composition of CuO nanoparticles was analyzed using energy dispersive X-ray (EDX). Figure 7 shows the EDX analysis of CuO nanoparticle samples treated with a 600 °C calcination temperature.
The results obtained indicate the presence of elements such as copper (Cu) and oxygen (O), which are the main constituents of CuO nanoparticles. Also, read the impurities as elemental chloride (Cl) with a minimal percentage. The percentage by weight of each element is obtained for a Cu atom of 76.81% with a weight of 1.032 keV; 22.99% O atoms with a weight of 0.231 keV; and for Cl atoms by 0.2% with a weight of 0.003 keV. The EDX results show a uniform distribution of atoms with a 1:1 ratio in CuO. These results indicate that the resulting nanoparticles have good purity because only a few impurities are detected in the CuO nanoparticles.

4. Conclusion

CuO nanoparticles have been successfully synthesized using chemical precipitation methods. The description of the calcination temperature resulted in a change in the characteristics of CuO-NP. The temperature of 600 °C is the best temperature to carry out the synthesis with the precipitation method. The crystal size of CuO-NP increases with increasing calcination temperature. The best crystallinity level of CuO-NP was produced at a calcination temperature of 600 °C. The trend of decreasing crystallinity level occurs when the temperature increases to 800 °C. Adding 1% PVP surfactant can produce smaller particle sizes than pure CuO-NP. However, it is not so significant in preventing agglomeration. Agglomeration with adding 1% PVP is only effective up to 600 °C but not at 800 °C.

References

