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ABSTRACT 

 

Photocatalytic degradation is a widely studied method for reducing the concentration of organic pollutants. 
This technique has proven effective in breaking down various organic compounds, including dyes, 
pharmaceuticals, and pesticides. Metal-Organic Frameworks (MOFs) represent a promising class of materials 
for photocatalytic degradation due to their favorable catalytic properties, such as high porosity and large 
surface area. Additionally, MOFs offer structural tunability, allowing their properties to be tailored for specific 
applications. This review discusses the structural characteristics, photocatalytic mechanisms, synthesis 
strategies, current applications, and the future prospects and challenges of Zn-based MOFs in the 
photocatalytic degradation of organic pollutants. 
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ABSTRAK 

  

Degradasi fotokatalitik merupakan metode yang sering diteliti untuk mengurangi jumlah polutan organik. 
Metode degradasi ini telah terbukti efektif dalam degradasi berbagai zat kimia organik yang meliputi zat 
pewarna, obat-obatan dan pestisida. Metal-Organic Frameworks (MOF) merupakan salah satu kelas material 
yang dapat diaplikasikan dalam degradasi fotokatalitik karena sifat yang mendukung dalam proses katalisis, 
seperti porositas yang besar dan luas permukaan yang tinggi. MOF juga menawarkan keleluasaan dalam 
pengaturan struktur, sehingga dapat dengan mudah menyesuaikan dengan sifat yang diinginkan.  Review ini 
akan membahas  berbagai struktur, mekanisme fotokatalisis, strategi sintesis, berbagai aplikasi yang telah 
dilakukan, serta prospek dan tantangan  aplikasi MOF berbasis Zn dalam degradasi fotokatalitik polutan 
organik.  
 
Kata kunci: Metal-Organic Frameworks, Seng, Degradasi Fotokatalitik 

 

PENDAHULUAN 
Pencemaran oleh polutan organik menjadi masalah di Indonesia. Berbagai macam aktivitas 

masyarakat menghasilkan limbah organik, mulai dari aktivitas rumah tangga dan pertanian [1]. 
Biasanya polutan berupa sisa pestisida, zat pewarna, dan juga obat-obatan yang dibuang ke 
lingkungan [2],[3]. Berbagai senyawa organik yang tidak dapat didegradasi secara biologis telah 
menarik perhatian karena toksisitas,  bioakumulasi, dan ketahanannya terhadap pengaruh lingkungan 
[2]. Contoh kasus pencemaran terjadi di perairan Jakarta yang melibatkan senyawa aromatik 
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polisiklik, pestisida dan metabolit pestisida,  surfaktan, beberapa prekursor produk kimia, dan produk 
perawatan serta metabolitnya [4]. Terdapat juga kasus pencemaran pestisida endapan situs 
pembudidayaan  hewan air yang terhubung dengan badan sungai di Jawa Tengah [5]. Kasus-kasus 
tersebut melibatkan bahan kimia yang memiliki risiko tinggi untuk mengganggu kesehatan, sehingga 
muncul urgensi untuk penanganan secara tepat. 

Penanganan pencemaran oleh senyawa organik dengan degradasi fotokatalitik telah diteliti 
secara ekstensif. Degradasi fotokatalitik menawarkan  solusi yang ramah lingkungan untuk mengatasi 
pencemaran, karena menggunakan energi dari sinar matahari yang bersih dan terbarukan. Proses ini 
melibatkan dua peristiwa yang terjadi bersamaan, yaitu oksidasi  oleh lubang h+ dan reduksi oleh e-, 
yang keduanya berasal dari induksi oleh cahaya terhadap katalis [6]. Induksi pembentukan h+ dan e- 
melibatkan cahaya dengan panjang gelombang tertentu yang mencapai fotokatalis, mengakibatkan 
eksitasi elektron dari pita konduksi ke pita valensi [7]. Sebagian besar fotokatalis merupakan material 
semikonduktor, karena muatan yang terbentuk dalam semikonduktor relatif stabil dan mudah 
bergerak dari muatan yang terbentuk [8]. Beberapa katalis yang dapat dijumpai dalam degradasi 
fotokatalitik meliputi oksida logam, karbon nitrida grafitik (g-CN), Metal-Organic Framework 

(MOF), dan Covalent Organic Framerork (COF) [6,8].  
Metal-Organic Framework (MOF) merupakan kelompok material kristal berpori yang terdiri 

dari klaster logam (Secondary Building Unit/SBU) dan molekul penghubung (linker) organik. 
Struktur MOF terbentuk dari ikatan koordinasi antara SBU dan linker [9],[10]. Sifat-sifat yang identik 
dengan MOF adalah porositas yang besar, situs aktif yang homogen serta struktur fungsionalitas yang 
mudah diatur [10],[11]. Beberapa MOF menunjukkan sifat-sifat seperti material semikonduktor. 
Sifat-sifat semikonduktor pada beberapa MOF terjadi karena klaster logam berperan sebagai quantum 
dots semikonduktor, dan linker berperan sebagai antena dalam penangkapan cahaya [12].  Meskipun 
begitu, sebagian besar MOF tidak menunjukkan perilaku seperti semikonduktor pada biasanya. 
Metode lebih lanjut untuk aplikasi MOF dalam degradasi fotokatalitik adalah sebagai zat pembawa 
(carrier) spesi fotoaktif [13]. Penelitian tentang aplikasi MOF dalam degradasi fotokatalitik senyawa 
organik ada dalam jumlah besar, dan beberapa artikel review telah merangkum penelitian-penelitian 
aplikasi dalam bidang tersebut. Namun review tentang berbagai jenis MOF yang berbasis satu jenis 
logam masih terbatas jumlahnya. Pembahasan khusus tentang aplikasi MOF berbasis logam Zn masih 
terbatas, walaupun MOF berbasis logam Zn mencakup beberapa MOF yang sudah diteliti secara 
ekstensif dan memiliki toksisitas yang relatif rendah [14]. 

Berdasarkan latar belakang diatas, review ini akan membahas struktur, mekanisme 
fotokatalisis, strategi sintesis, berbagai aplikasi yang telah dilakukan, serta prospek dan tantangan  
aplikasi MOF berbasis Zn dalam degradasi fotokatalitik polutan organik. 

 
METODOLOGI PENELITIAN 

Review ini dilakukan dengan studi literatur berfokus pada perkembangan terkini aplikasi MOF 
berbasis Zn dalam degradasi senyawa organik,  yang terbit dalam rentang waktu 2016-2025. Literatur 
ilmiah sebagai sumber data diambil dari Google Scholar, ScienceDirect, dan springer.  
 

HASIL DAN PEMBAHASAN 

Struktur MOF berbasis logam Zn 

Logam Zn memiliki konfigurasi elektron berupa [Ar]3d10 dan memiliki bilangan oksidasi yang 
paling umum sebesar +2. Zn (II)  memiliki fleksibilitas dalam ikatan koordinasi. Bilangan koordinasi 
yang dapat dimiliki oleh Zn (II) berkisar dari 4 sampai 6, dengan geometri umum mencakup 
oktahedral, tetrahedral, trigonal bypiramidal dan square pyramidal [15]. Keberagaman geometri ini 
membuat MOF berbasis logam Zn dapat membentuk banyak SBU, yang menjadi dasar pembentukan 
struktur MOF yang berbeda. Di sisi lain, variasi linker  dapat dijadikan parameter untuk mengatur 
ukuran dan dimensi MOF [16].  
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MOF berbasis Zn yang populer seperti MOF-5 (IRMOF-1) dan seluruh MOF dari kelompok 
IRMOF terdiri dari klaster Zn₄O(CO₂)₆ yang membentuk geometri oktahedral [17]. MOF berbasis Zn 
dari kelompok Zeolitic Imidazolate Framework (ZIF) memiliki SBU berupa Zn yang berkoordinasi 
dengan atom N secara tetrahedral [18]. MOF dengan SBU berupa klaster Zn2(CO2)4 juga telah dikenal 
selama beberapa dekade dengan contoh MOF-2 sebagai pelopor dari kelompok ini. Contoh lainnya 
adalah HKUST-1 dan NU-110 [19]. SBU lain yang dapat ditemukan pada material MOF lain meliputi 
Zn3(CO2)6 [20].  

 

 
Gambar 1. (a) Struktur Zn₄O(CO₂)₆ (b) Struktur Zn2(CO2)4 (c) Struktur Zn3(CO2)6 [21]  

 
Disamping beberapa SBU yang telah disebutkan di atas, MOF berbasis Zn juga dapat memiliki 

SBU yang tidak biasa dan merupakan MOF hasil sintesis ekploratif.  Beberapa contoh struktur SBU 
dari MOF eksploratif adalah sebagai berikut:  

 
Tabel 1. Berbagai SBU MOF berbasis Zn hasil sintesis eksploratif 

Klaster SBU Referensi 

ZnN3O3 [22] 
ZnN2O2S [23] 
Zn₅(μ₃-OH)₂(COO)₆ [24] 
Zn₃(COO)₆(DMF)₃ [25] 

 
Mekanisme Fotokatalisis MOF berbasis logam Zn 

Proses fotokatalisis oleh material MOF yang memiliki sifat-sifat semikonduktor dimulai dari 
penyerapan cahaya yang memiliki energi lebih besar dari bandgap MOF tersebut [10]. Linker organik 
memiliki peran diibaratkan seperti antena penangkap energi cahaya melalui penyerapan cahaya yang 
menyebabkan eksitasi elektron dari HOMO ke LUMO. Setelah terjadi eksitasi, pemisahan muatan 
elektron dan lubang elektron dapat terjadi dengan perpindahan elektronn dari linker ke klaster logam 
Zn pada SBU [26]. Mekanisme ini desebut transfer muatan dari ligan ke logam (Ligand to Metal 

Charge Transfer/LMCT). Proses generasi elektron dapat juga terjadi oleh transfer muatan dari ligan 
ke ligan, atau logam ke ligan. Dalam kasus MOF berbasis Zn khususnya MOF-5 yang telah diketahui 
memiliki sifat seperti semikonduktor tradisional memiliki mekanisme generasi elektron melalui 
LMCT, atau dapat dianggap sebagai tranfer elektron dari ligan ke klaster [27].  

Setelah pemisahan muatan terjadi, lubang h+   dapat menyebabkan reaksi oksidasi terhadap 
terhadap molekul air menjadi OH·-. Elektron akan menyebabkan reduksi terhadap O2 menjadi O2·-, 
yang selanjutnya akan berubah menjadi OH·-. Reaksi pembentukan terjadi adalah sebagai berikut: 

 
S + hv → S (h)+

VB + e-
CB   (1) 

S (h)+
VB + H2O → S + H+ + OH·  (2) 

e-
CB + O2 → O2

·2-    (3) 
O2

·2- + H+ → HO2
·   (4) 

2 HO2
· → H2O2 + O2    (5) 

H2O2 → 2 OH·    (6) 
 
Radikal OH· yang terbentuk akan bereaksi dengan polutan organik menghasilkan H2O dan CO2 [7].  
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Gambar 2. Mekanisme pembentukan radikal OH·, konsep diadaptasi dari referensi [7] 

 
Walaupun MOF-5 sebagai MOF berbasis Zn yang paling banyak diteliti memiliki sifat-sifat 

semikonduktor, sebagian besar MOF berbasis Zn lain tidak memiliki sifat-sifat seperti material 
semikonduktor pada umumnya. Dalam hal ini, MOF yang tidak memiliki sifat-sifat semikonduktor 
dapat dijadikan sebagai pembawa dari zat yang memiliki aktivitas fotokatalitik. MOF bahkan dapat 
berfungsi dalam perpindahan muatan dengan mekanisme transfer elektron dari ligan ke klaster 
sehingga rekombinasi muatan dapat dikurangi [13]. Penggunaan MOF berbasis Zn sebagai zat 
pembawa untuk zat lain yang memiliki aktivitas fotokatalitik telah banyak diteliti, dengan zat-zat 
fotoaktif yang dimuat meliputi nanopartikel oksida logam [28], nanopartikel logam [29] dan g-CN 
[30].  

 
Strategi Sintesis MOF berbasis Zn 

Berbagai metode sintesis telah dilakukan dalam sintesis MOF berbasis Zn . Proses sintesis yang 
tepat dapat menghasilkan MOF dengan morfologi, kristalinitas dan aktivitas fotokatalitik, serta sifat 
lain yang spesifik untuk kebutuhan tertentu. Beberapa metode sintesis yang umum meliputi 
solvotermal, kopresipitasi, elektrokimia, dan mekanokimia. Material-material MOF berbasis Zn dan 
metode sintesisnya dapat dilihat pada Tabel 2. 
a. Solvotermal 

Metode solvotermal merupakan metode sintesis yang melibatkan pembentukan material  dari 
reaksi garam-garam prekursor dalam suatu pelarut pada suhu dan tekanan tinggi. Metode solvotermal 
dilakukan dalam autoclave dengan liner polytetrafluoroethylene (PTFE) [31].  Suhu pada sintesis 
solvotermal berada di atas titik didih pelarut.  Kelebihan dari metode ini adalah rendemen sintesis 
yang tinggi, serta kontrol yang presisi terhadap kristalinitas, bentuk, dan ukuran kristalit [32]. 
Kelemahan dari metode sintesis ini adalah waktu sintesis yang lama, yaitu dalam  jangka waktu 
beberapa jam hingga berhari-hari [33]. Penelitian-penelitian yang melakukan sintesis MOF berbasis 
Zn dirangkum pada Tabel.2.  
 
b. Sintesis kopresipitasi suhu ruang 

Sintesis ini mirip dengan teknik solvotermal, namun tanpa pemanasan dan tekanan tinggi. 
Reaksi dalam pelarut terjadi pada suhu ruang dan kondisi ringan. Agen deprotonasi berupa basa sering 
digunakan untuk menginisiasi deprotonasi, yang selanjutnya linker terdeprotonasi akan membentuk 
struktur MOF. MOF akan dihasilkan sebagai endapan (presipitat). Kelebihan dari metode ini adalah 
penggunaan energi yang lebih efisien, dan proses yang sederhana [33]. 
 
c. Sintesis terbantu gelombang mikro 

Sintesis terbantu gelombang mikro  merupakan metode sintesis yang melibatkan reaksi dalam 
chamber tertutup, serta memanfaatkan radiasi gelombang mikro sebagai sumber panas. Dalam 
metode ini, reaktan dimasukkan ke dalam wadah teflon, dan ditempatkan dalam chamber yang 
diradiasikan dengan gelombang mikro. Kelebihan sintesis terbantu gelombang mikro adalah waktu 
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sintesis yang lebih cepat jika dibandingkan dengan metode pemanasan solvotermal biasa [34]. Pada 
Tabel 2, waktu sintesis terbantu gelombang mikro berkisar antara 5 menit sampai 30 menit, 
dibandingkan dengan metode solvotermal yang berkisar beberapa jam hingga berhari-hari   
 
d. Sintesis elektrokimia 

Dalam sintesis elektrokimia, MOF akan terdeposisi pada permukaan elektroda. Sintesis 
elektrokimia memiliki kelebihan dalam waktu yang cepat dan reaksi yang memerlukan kondisi ringan 
jika dibandingkan dengan solvotermal dan sintesis terbantu gelombang mikro[35]. Beberapa 
penelitian yang melakukan sintesis MOF berbasis Zn ditampilkan pada Tabel 2. 
 
e. Sintesis mekanokimia 

Metode mekanokimia dapat menghasilkan produk secara cepat, dan menggunakan sedikit 
pelarut atau tanpa pelarut. Kelebihan dari metode sintesis mekanokimia adalah tidak menggunakan 
pelarut sehingga dapat mengurangi dampak negatif ke lingkungan, waktu sintesis yang cepat, serta 
memungkinkan untuk membentuk material melalui jalur yang sulit dicapai dari metode sintesis lain. 
Metode ini memiliki tantangan untuk memperbesar skala reaksi sintesis MOF [36]. 

 
Tabel 2. Metode Sintesis MOF Berbasis Zn dan Parameter-Parameter Sintesis Metode Solvotermal 
 

MOF Prekursor Zn Pelarut 
Kondisi Reaksi 

Ref. 
Suhu Waktu 

MOF-5 Zn(NO3)2·6H2O DMF 135˚C 24 jam [37] 
MOF-5 Zn(NO3)2·6H2O DMF 140˚C 24 jam [38] 
MOF-5 Zn(NO3)2·6H2O DMF 130˚C 19 jam [39] 
MOF-5 Zn(NO3)2·6H2O DMF 150˚C 6 jam [40] 
MOF-5 Zn(CH3COO)2 DMF 125 ˚C 24 jam [41] 
MOF-5 Zn(NO3)2·6H2O DMF 130˚C 4 jam [42] 
MOF-5 Zn(NO3)2·6H2O DMF 110 ˚C 24 jam [43] 
MOF-5 Zn(NO3)2·6H2O DMF 120 ˚C 25 jam [44] 
ZIF-8 Zn(NO3)2·6H2O DMF 140 ˚C 14 jam [45] 
ZIF-4 Zn(NO3)2·6H2O DMF 150 ˚C 72 jam [46] 
ZIF-8 Zn(NO3)2·6H2O DMF 180 ˚C 6 jam [47] 

Zn-5-amino-
1H-tetrazol 

Zn(CH3COO)2·2H2O Metanol-
asetonitril-air 

80-100˚C 4-12 jam [48] 

Metode Kopresipitasi Suhu Ruang 

MOF Prekursor Zn Pelarut 
Agen 

Deprotonasi 
Waktu 
reaksi 

Ref. 

MOF-5 Zn(CH3COO)2·2H2O DMF TEA 150 jam [49] 
MOF-5 Zn(NO3)2·6H2O DMF NaOH 24 jam [50] 
MOF-5 Zn(NO3)2·6H2O DMF TEA 120 menit [51] 
MOF-5 Zn(NO3)2·6H2O DMF TEA 120 menit [52] 
MOF-5 Zn(NO3)2·6H2O DMF TEA 60 menit [53] 
MOF-5 Zn(NO3)2·6H2O DMF TEA 45 menit [54] 
MOF-5 Zn(CH3COO)2·2H2O DMF TEA 150 menit [55] 
MOF-5 Zn(NO3)2·6H2O DMF TEA 180 menit [56] 
MOF-5 Zn(NO3)2·6H2O DMF TEA Beberapa 

menit 
[57] 

MOF-5 Zn(NO3)2·6H2O DMF triethanolamin
e 

90 menit [58] 

MOF-5 Zn(CH3COO)2·2H2O DMF TEA 150 menit [59] 
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ZIF-93 Zn(NO3)2·6H2O Air NH4OH 18 jam  [60] 
ZIF-7 Zn(NO3)2·4H2O Air NH3 pekat 10 menit [61] 
ZIF-8 Zn(NO3)2·4H2O Methanol - 60 menit [62] 
ZIF-8 Zn(NO3)2·6H2O Air NaOH 60 menit [63] 

Metode Sintesis Terbantu Gelombang Mikro (Microwave Assisted Synthesis) 
MOF Prekursor Zn Pelarut Waktu 

reaksi 
Ref. 

ZIF-8 Zn(NO3)2·6H2O DMF 5 menit [64] 
Zn-Asam tereftalat 
(TPA) 

Zn(CH3COO)2 Air 30 menit [65] 

MOF-205 Zn(NO3)2·4H2O DEF 20 menit [66] 
ZIF-8 ZnO Air, Air-DMF, Air-

metanol 
30 menit [67] 

Metode Sintesis Elektrokimia 
MOF Prekursor Zn Pelarut Waktu Ref. 
Zn-TPA Zn(NO3)2·6H2O DMF-metanol 20 menit [68] 
Zn-asam 1,3,5-
benzen 
atrikarboksilat 
(H3BTC) 

Zn(NO3)2·6H2O Air-etanol 150 menit [69] 

Metode Sintesis Mekanokimia 
MOF 
 

Prekursor Volume 
reaktor 

Kecepatan 
rotasi/vibrasi 

Ukuran 
ball mill 

Waktu Ref. 

ZIF-8 ZnO;Zn(CH3COO)2·2H2O; 
2-metilimidazol 

10 mL 30 Hz 10 mm 30 
menit 

[70] 

ZIF-90 ZnO;Zn(CH3COO)2·2H2O; 
2-imidazol karbaldehida 

10 mL 30 Hz 10 mm 30 
menit 

[70] 

ZIF-94 ZnO;Zn(CH3COO)2·2H2O; 
4-metil-1H-imidazol-5-
karbaldehida 

25 mL 20 Hz 15 mm 45 
menit 

[70] 

ZIF-7 ZnO;Zn(CH3COO)2·2H2O; 
benzilimidazol 

10 mL 30 Hz 10 mm 15 
menit 

[70] 

MOF-74 ZnO; asam 2,5-
dihydroksitereftalat 
(H4HDTA) 

25 mL 30 Hz 7 gram 70 
menit 

[70] 

MOF-5 Zn(CH3COO)2·2H2O; 
Asam tereftalat 

80 mL 1000 rpm 10 mm 60 
menit 

[71] 

MOF-5 Zn(CH3COO)2·2H2O; 
Asam tereftalat 

80 mL  10 mm 60 
menit 

[72] 

 

Strategi sintesis untuk meningkatkan aktivitas fotokatalitik 

a. Doping dengan logam atau nonlogam 
Logam yang didoping pada MOF dapat mendukung penyerapan cahaya oleh MOF serta 

mempengaruhi mobilitas muatan [73]. Doping ion logam pada MOF yang memiliki aktivitas 
penyerapan cahaya terbatas dapat menurunkan band-gap dari MOF [74]. Contoh dari strategi sintesis 
ini telah dilakukan dengan doping Ag pada permukaan ZIF-8 yang meningkatkan aktifitas 
fotokatalitik terhadap degradasi Methyl orange dan Methylene Blue dibandingkan dengan ZIF-8 saja 
[75]. 
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b. Pembuatan Komposit MOF dengan Semikonduktor. 
Komposit MOF dengan semikonduktor dapat meningkatkan fotosensitivitas dari MOF. Dalam 

kasus ini, MOF dapat berperan dalam proses adsorpsi polutan yang selanjutnya akan mendukung 
proses fotokatalisis [74]. MOF juga mendukung proses pemisahan muatan yang lebih efisien dari 
material sehingga rekombinasi muatan dapat dikurangi secara signifikan [13]. Contoh dari komposit 
ini adalah ZIF-8@TiO2 yang memiliki aktivitas fotokatalitik yang lebih tinggi terhadap tetrvaasiklin 
daripada TiO2. 
 
c. Modifikasi Pasca-Sintesis (Post-Synthetic Modification) 

Post-Synthetic Modification pada MOF dapat dilakukan dengan merekayasa logam atau ligan 
pada suatu MOF sehingga memiliki sebuah fungsionalitas yang diharapkan.  Contoh Post-Synthetic 

Modification adalah pertukaran logam, pertukaran ligan atau penambahan sebuah gugus fungsi pada 
linker MOF [76]. Contoh dari strategi ini adalah pembentukan gugus imina terminal pada ZIF-8 
dengan menyinari sinar UV, yang menyebabkan serapan oleh MOF terjadi pada rentang cahaya 
tampak [77]. 
 
Berbagai Polutan Organik yang didegradasi dengan material MOF berbasis Zn 

Penelitian-penelitian yang memanfaatkan MOF berbasis Zn untuk degradasi fotokatalitik 
polutan organik mencakup zat warna (dye), obat-obatan dan pestisida. Pewarna organik merupakan 
jenis polutan organik yang paling banyak didegradasi dengan katalis MOF berbasis Zn. Penelitian 
tentang degradasi obat-obatan juga dilakukan secara ekstensif karena efek khusus yang ditimbulkan. 
Obat-obatan yang berada pada lingkungan dapat memiliki efek toksik kepada organisme non target 
serta menyebabkan resistensi pada mikroba di perairan, terutama untuk obat-obatan antibiotik. Selain 
zat pewarna dan obat-obatan, Pestisida merupakan jenis polutan yang perlu ditangani secara serius 
karena memiliki ketahanan dan efek toksik yang tinggi diantara polutan organik lainnya.  Penelitian-
penelitian yang memanfaatkan MOF berbasis Zn untuk degradasi fotokatalitik ditampilkan pada 
Tabel 3. 

 

Tabel 3. Jenis MOF dan aplikasinya dalam degradasi berbagai macampolutan organik 
Zat Pewarna 

MOF Zat pewarna Waktu Efisiensi 
Degradasi 

Ref. 

ZIF-8 KN-B 120 menit 95% [78] 
ZIF-8/BiFeO3 Rhodamine-B 90 menit 99,42% [79] 
Ag2CO3/ZIF-8 Rhodamine-B 50 menit 100% [80] 
Nanopartikel Ag@ZIF-8 Methylene Blue dan 

Congo Red 
120 menit 
dan 40 menit 

97,25% dan 
100% 

[81] 

MoSe@ZIF-8 Malachite Green 60 menit 100% [82] 
TiO2@ZIF-8 Methylene Blue dan 

Rhodamine B 
120 menit 87,5% dan 

64,85% 
[83] 

CuO-ZnO/ZIF-8 Acid Orange 7 100 menit 98,1% [84] 
Zn2(NH2-Asam 
tereftalat)2(H2O) 

Methyl Violet 40 menit 67,31% [85] 

MOF—5 Methylene Blue 24 jam 85% [86] 
MOF-5/Graphene Oxide Methylene Blue 390 menit 92% [87] 
ZnO@MOF-5 Methylene Blue 210 menit 75,75% [88] 
MOF-5/Bi2WO6 Rhodamine-B 30 menit 99,31% [89] 

Obat-obatan 
MOF Obat-obatan Waktu Efisiensi 

Degradasi 
Ref. 
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MoS2/ZIF-8 Ciprofloxacin dan 
tetracycline hydrochoride 

180 menit 93,2% dan 
75,6% 

[90] 

ZIF-8@ZIF-67 Ciprofloxacin, 
levofloxacin, dan 
ofloxacin 

120 menit 65%, 54%, dan 
48% 

[91] 

Ag/ZIF-8 Ciprofloxacin 90 menit 82,3% [92] 
γ-Fe2O3@ SiO2@ZIF8-Ag amoxicillin 60 menit 100% [93] 
Gd@Zn-MOF Nitrofurantoin 120 menit 92,15% [94] 
Ag2S-ZnS/ZIF-8 Tetracycline  10 menit 92,74% [95] 
[Zn(meso–{5,10,15,20-
tetrakis(4-
cyanophenyl)porphyrin})(H 
2 O)].3DMF 

Tetracycline 50 menit 95,5% [96] 

[Zn(tereftalat)(2,5-
bis(pyrid-4 -
yl)pyridine)·3H2O] 

Nitrofurazone 
 

60 menit 95,27% [97] 

Pestisida 
MOF Pestisida Waktu Efisiensi 

Degradasi 
Ref. 

Fe3O4-COOH@ZIF-
8/Ag/Ag3PO4 

Diazinon 55 menit 63,4% [98] 

CNC/ZIF-8/Ag Diquat 60 menit 95,62% [99] 
TiO2/ZIF-8 Imidacloprid 240 menit 91,6% [100] 

 

Tantangan Pemanfaatan Mof Berbasis Zn dalam Degradasi Polutan Organik  

Tantangan utama dalam pemanfaatan MOF sebagai fotokatalisis adalah kestabilan pada 
lingkungan. Beberapa MOF seperti ZIF-8 dan MOF-5 memiliki Beberapa MOF-5 memiliki 
ketidakstabilan pada kelembapan, karena dapat memicu degradasi hidrolitik yang selanjutnya 
merusak struktur kerangka MOF [101]. MOF berbasis Zn yang berkoordinasi melalui gugus 
karboksilat lebih rentan  terhadap degradasi daripada MOF dari kelompok ZIF yang terikat melalui 
gugus azolat [12]. Disisi lain, MOF berbasis Zn umumnya tidak memiliki aktivitas semikonduktor 
yang baik [13].  

Untuk mengatasi hal-hal tersebut, strategi dalam mendesain ataupun meningkatkat efektivitas 
harus mempertimbangkan gugus fungsi yang sesuai untuk mempertahankan kestabilan MOF berbasis 
Zn , serta mengkombinasikan MOF berbasis Zn dengan strategi doping atau komposit untuk 
meningkatkan sensitivitas terhadap cahaya dan meningkatkan ketahanannya pada lingkungan.  
 
KESIMPULAN 

MOF berbasis Zn memiliki potensi dalam degradasi fotokatalitik polutan orgnaik.. MOF dapat 
menjadi fotokatalis atau berperan sebagai pembawa dari zat fotoaktif. MOF berbasis Zn dapat 
disintesis dengan metode solvotermal, kopresipitasi suhu ruang, sintesis terbantu gelombang mikro, 
sintesis elektrokimia, dan  mekanokimiak. Untuk meningkatkan aktivitas fotokatalitik dari MOF 
berbasis Zn,dapat dilakukan dengan doping, pembuatan komposit, serta modifikasi pasca sintesis. 
Adapun tantangan dalam penggunaan MOF berbasis Zn adalah kestabilan yang rendah dan aktivitas 
fotokatalitik yang terbatas, sehingga strategi sintesis untuk meningkatkan kestabilan dan aktivitas 
perlu dikaji secara mendalam untuk sintesis material MOF berbasis Zn. 
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