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ABSTRACT

Photocatalytic degradation is a widely studied method for reducing the concentration of organic pollutants.
This technique has proven effective in breaking down various organic compounds, including dyes,
pharmaceuticals, and pesticides. Metal-Organic Frameworks (MOFs) represent a promising class of materials
for photocatalytic degradation due to their favorable catalytic properties, such as high porosity and large
surface area. Additionally, MOFs offer structural tunability, allowing their properties to be tailored for specific
applications. This review discusses the structural characteristics, photocatalytic mechanisms, synthesis
strategies, current applications, and the future prospects and challenges of Zn-based MOFs in the
photocatalytic degradation of organic pollutants.
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ABSTRAK

Degradasi fotokatalitik merupakan metode yang sering diteliti untuk mengurangi jumlah polutan organik.
Metode degradasi ini telah terbukti efektif dalam degradasi berbagai zat kimia organik yang meliputi zat
pewarna, obat-obatan dan pestisida. Metal-Organic Frameworks (MOF) merupakan salah satu kelas material
yang dapat diaplikasikan dalam degradasi fotokatalitik karena sifat yang mendukung dalam proses katalisis,
seperti porositas yang besar dan luas permukaan yang tinggi. MOF juga menawarkan keleluasaan dalam
pengaturan struktur, sehingga dapat dengan mudah menyesuaikan dengan sifat yang diinginkan. Review ini
akan membahas berbagai struktur, mekanisme fotokatalisis, strategi sintesis, berbagai aplikasi yang telah
dilakukan, serta prospek dan tantangan aplikasi MOF berbasis Zn dalam degradasi fotokatalitik polutan
organik.

Kata kunci: Metal-Organic Frameworks, Seng, Degradasi Fotokatalitik

PENDAHULUAN

Pencemaran oleh polutan organik menjadi masalah di Indonesia. Berbagai macam aktivitas
masyarakat menghasilkan limbah organik, mulai dari aktivitas rumah tangga dan pertanian [1].
Biasanya polutan berupa sisa pestisida, zat pewarna, dan juga obat-obatan yang dibuang ke
lingkungan [2],[3]. Berbagai senyawa organik yang tidak dapat didegradasi secara biologis telah
menarik perhatian karena toksisitas, bioakumulasi, dan ketahanannya terhadap pengaruh lingkungan
[2]. Contoh kasus pencemaran terjadi di perairan Jakarta yang melibatkan senyawa aromatik
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polisiklik, pestisida dan metabolit pestisida, surfaktan, beberapa prekursor produk kimia, dan produk
perawatan serta metabolitnya [4]. Terdapat juga kasus pencemaran pestisida endapan situs
pembudidayaan hewan air yang terhubung dengan badan sungai di Jawa Tengah [5]. Kasus-kasus
tersebut melibatkan bahan kimia yang memiliki risiko tinggi untuk mengganggu kesehatan, sehingga
muncul urgensi untuk penanganan secara tepat.

Penanganan pencemaran oleh senyawa organik dengan degradasi fotokatalitik telah diteliti
secara ekstensif. Degradasi fotokatalitik menawarkan solusi yang ramah lingkungan untuk mengatasi
pencemaran, karena menggunakan energi dari sinar matahari yang bersih dan terbarukan. Proses ini
melibatkan dua peristiwa yang terjadi bersamaan, yaitu oksidasi oleh lubang h* dan reduksi oleh ¢,
yang keduanya berasal dari induksi oleh cahaya terhadap katalis [6]. Induksi pembentukan h” dan e’
melibatkan cahaya dengan panjang gelombang tertentu yang mencapai fotokatalis, mengakibatkan
eksitasi elektron dari pita konduksi ke pita valensi [7]. Sebagian besar fotokatalis merupakan material
semikonduktor, karena muatan yang terbentuk dalam semikonduktor relatif stabil dan mudah
bergerak dari muatan yang terbentuk [8]. Beberapa katalis yang dapat dijumpai dalam degradasi
fotokatalitik meliputi oksida logam, karbon nitrida grafitik (g-CN), Metal-Organic Framework
(MOF), dan Covalent Organic Framerork (COF) [6,8].

Metal-Organic Framework (MOF) merupakan kelompok material kristal berpori yang terdiri
dari klaster logam (Secondary Building Unit/SBU) dan molekul penghubung (/inker) organik.
Struktur MOF terbentuk dari ikatan koordinasi antara SBU dan /linker [9],[10]. Sifat-sifat yang identik
dengan MOF adalah porositas yang besar, situs aktif yang homogen serta struktur fungsionalitas yang
mudah diatur [10],[11]. Beberapa MOF menunjukkan sifat-sifat seperti material semikonduktor.
Sifat-sifat semikonduktor pada beberapa MOF terjadi karena klaster logam berperan sebagai quantum
dots semikonduktor, dan linker berperan sebagai antena dalam penangkapan cahaya [12]. Meskipun
begitu, sebagian besar MOF tidak menunjukkan perilaku seperti semikonduktor pada biasanya.
Metode lebih lanjut untuk aplikasi MOF dalam degradasi fotokatalitik adalah sebagai zat pembawa
(carrier) spesi fotoaktif [13]. Penelitian tentang aplikasi MOF dalam degradasi fotokatalitik senyawa
organik ada dalam jumlah besar, dan beberapa artikel review telah merangkum penelitian-penelitian
aplikasi dalam bidang tersebut. Namun review tentang berbagai jenis MOF yang berbasis satu jenis
logam masih terbatas jumlahnya. Pembahasan khusus tentang aplikasi MOF berbasis logam Zn masih
terbatas, walaupun MOF berbasis logam Zn mencakup beberapa MOF yang sudah diteliti secara
ekstensif dan memiliki toksisitas yang relatif rendah [14].

Berdasarkan latar belakang diatas, review ini akan membahas struktur, mekanisme
fotokatalisis, strategi sintesis, berbagai aplikasi yang telah dilakukan, serta prospek dan tantangan
aplikasi MOF berbasis Zn dalam degradasi fotokatalitik polutan organik.

METODOLOGI PENELITIAN

Review ini dilakukan dengan studi literatur berfokus pada perkembangan terkini aplikasi MOF
berbasis Zn dalam degradasi senyawa organik, yang terbit dalam rentang waktu 2016-2025. Literatur
ilmiah sebagai sumber data diambil dari Google Scholar, ScienceDirect, dan springer.

HASIL DAN PEMBAHASAN
Struktur MOF berbasis logam Zn

Logam Zn memiliki konfigurasi elektron berupa [Ar]3d'? dan memiliki bilangan oksidasi yang
paling umum sebesar +2. Zn (II) memiliki fleksibilitas dalam ikatan koordinasi. Bilangan koordinasi
yang dapat dimiliki oleh Zn (II) berkisar dari 4 sampai 6, dengan geometri umum mencakup
oktahedral, tetrahedral, trigonal bypiramidal dan square pyramidal [15]. Keberagaman geometri ini
membuat MOF berbasis logam Zn dapat membentuk banyak SBU, yang menjadi dasar pembentukan
struktur MOF yang berbeda. Di sisi lain, variasi linker dapat dijadikan parameter untuk mengatur
ukuran dan dimensi MOF [16].
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MOF berbasis Zn yang populer seperti MOF-5 (IRMOF-1) dan seluruh MOF dari kelompok
IRMOF terdiri dari klaster ZnsO(CO2)s yang membentuk geometri oktahedral [17]. MOF berbasis Zn
dari kelompok Zeolitic Imidazolate Framework (ZIF) memiliki SBU berupa Zn yang berkoordinasi
dengan atom N secara tetrahedral [ 18]. MOF dengan SBU berupa klaster Zn2(CO>)4 juga telah dikenal
selama beberapa dekade dengan contoh MOF-2 sebagai pelopor dari kelompok ini. Contoh lainnya
adalah HKUST-1 dan NU-110[19]. SBU lain yang dapat ditemukan pada material MOF lain meliputi
Zn3(CO2)6 [20].
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Gambar 1. (a) Struktur ZnsO(CO2)s (b) Struktur Znz(CO2)4 (c) Struktur Zn3(CO2)e [21]

Disamping beberapa SBU yang telah disebutkan di atas, MOF berbasis Zn juga dapat memiliki
SBU yang tidak biasa dan merupakan MOF hasil sintesis ekploratif. Beberapa contoh struktur SBU
dari MOF eksploratif adalah sebagai berikut:

Tabel 1. Berbagai SBU MOF berbasis Zn hasil sintesis eksploratif

Klaster SBU Referensi
ZnN303 [22]
ZnN>0;S [23]
Zns(u3-OH)2(COO)6 [24]
Zn3(COO)s(DMF); [25]

Mekanisme Fotokatalisis MOF berbasis logam Zn

Proses fotokatalisis oleh material MOF yang memiliki sifat-sifat semikonduktor dimulai dari
penyerapan cahaya yang memiliki energi lebih besar dari bandgap MOF tersebut [10]. Linker organik
memiliki peran diibaratkan seperti antena penangkap energi cahaya melalui penyerapan cahaya yang
menyebabkan eksitasi elektron dari HOMO ke LUMO. Setelah terjadi eksitasi, pemisahan muatan
elektron dan lubang elektron dapat terjadi dengan perpindahan elektronn dari /inker ke klaster logam
Zn pada SBU [26]. Mekanisme ini desebut transfer muatan dari ligan ke logam (Ligand to Metal
Charge Transfer/LMCT). Proses generasi elektron dapat juga terjadi oleh transfer muatan dari ligan
ke ligan, atau logam ke ligan. Dalam kasus MOF berbasis Zn khususnya MOF-5 yang telah diketahui
memiliki sifat seperti semikonduktor tradisional memiliki mekanisme generasi elektron melalui
LMCT, atau dapat dianggap sebagai tranfer elektron dari ligan ke klaster [27].

Setelah pemisahan muatan terjadi, lubang h* dapat menyebabkan reaksi oksidasi terhadap
terhadap molekul air menjadi OH"". Elektron akan menyebabkan reduksi terhadap O, menjadi O>",
yang selanjutnya akan berubah menjadi OH-". Reaksi pembentukan terjadi adalah sebagai berikut:

S+hv— S (h)'vs +ecB (1)
S(h)'vs +H0 > S+H"+OH (2
ecg+ 02— 0% 3)
0, +H" — HOy 4)
2 HOy — H0, + Oz (5)
H,0; — 2 OH’ (6)

Radikal OH" yang terbentuk akan bereaksi dengan polutan organik menghasilkan H>O dan CO» [7].
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Gambar 2. Mekanisme pembentukan radikal OH-, konsep diadaptasi dari referensi [7]

Walaupun MOF-5 sebagai MOF berbasis Zn yang paling banyak diteliti memiliki sifat-sifat
semikonduktor, sebagian besar MOF berbasis Zn lain tidak memiliki sifat-sifat seperti material
semikonduktor pada umumnya. Dalam hal ini, MOF yang tidak memiliki sifat-sifat semikonduktor
dapat dijadikan sebagai pembawa dari zat yang memiliki aktivitas fotokatalitik. MOF bahkan dapat
berfungsi dalam perpindahan muatan dengan mekanisme transfer elektron dari ligan ke klaster
sehingga rekombinasi muatan dapat dikurangi [13]. Penggunaan MOF berbasis Zn sebagai zat
pembawa untuk zat lain yang memiliki aktivitas fotokatalitik telah banyak diteliti, dengan zat-zat
fotoaktif yang dimuat meliputi nanopartikel oksida logam [28], nanopartikel logam [29] dan g-CN
[30].

Strategi Sintesis MOF berbasis Zn

Berbagai metode sintesis telah dilakukan dalam sintesis MOF berbasis Zn . Proses sintesis yang
tepat dapat menghasilkan MOF dengan morfologi, kristalinitas dan aktivitas fotokatalitik, serta sifat
lain yang spesifik untuk kebutuhan tertentu. Beberapa metode sintesis yang umum meliputi
solvotermal, kopresipitasi, elektrokimia, dan mekanokimia. Material-material MOF berbasis Zn dan
metode sintesisnya dapat dilihat pada Tabel 2.
a. Solvotermal

Metode solvotermal merupakan metode sintesis yang melibatkan pembentukan material dari
reaksi garam-garam prekursor dalam suatu pelarut pada suhu dan tekanan tinggi. Metode solvotermal
dilakukan dalam autoclave dengan liner polytetrafluoroethylene (PTFE) [31]. Suhu pada sintesis
solvotermal berada di atas titik didih pelarut. Kelebihan dari metode ini adalah rendemen sintesis
yang tinggi, serta kontrol yang presisi terhadap kristalinitas, bentuk, dan ukuran kristalit [32].
Kelemahan dari metode sintesis ini adalah waktu sintesis yang lama, yaitu dalam jangka waktu
beberapa jam hingga berhari-hari [33]. Penelitian-penelitian yang melakukan sintesis MOF berbasis
Zn dirangkum pada Tabel.2.

b. Sintesis kopresipitasi suhu ruang

Sintesis ini mirip dengan teknik solvotermal, namun tanpa pemanasan dan tekanan tinggi.
Reaksi dalam pelarut terjadi pada suhu ruang dan kondisi ringan. Agen deprotonasi berupa basa sering
digunakan untuk menginisiasi deprotonasi, yang selanjutnya /inker terdeprotonasi akan membentuk
struktur MOF. MOF akan dihasilkan sebagai endapan (presipitat). Kelebihan dari metode ini adalah
penggunaan energi yang lebih efisien, dan proses yang sederhana [33].

c. Sintesis terbantu gelombang mikro

Sintesis terbantu gelombang mikro merupakan metode sintesis yang melibatkan reaksi dalam
chamber tertutup, serta memanfaatkan radiasi gelombang mikro sebagai sumber panas. Dalam
metode ini, reaktan dimasukkan ke dalam wadah teflon, dan ditempatkan dalam chamber yang
diradiasikan dengan gelombang mikro. Kelebihan sintesis terbantu gelombang mikro adalah waktu
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sintesis yang lebih cepat jika dibandingkan dengan metode pemanasan solvotermal biasa [34]. Pada
Tabel 2, waktu sintesis terbantu gelombang mikro berkisar antara 5 menit sampai 30 menit,
dibandingkan dengan metode solvotermal yang berkisar beberapa jam hingga berhari-hari

d. Sintesis elektrokimia

Dalam sintesis elektrokimia, MOF akan terdeposisi pada permukaan elektroda. Sintesis
elektrokimia memiliki kelebihan dalam waktu yang cepat dan reaksi yang memerlukan kondisi ringan
jika dibandingkan dengan solvotermal dan sintesis terbantu gelombang mikro[35]. Beberapa
penelitian yang melakukan sintesis MOF berbasis Zn ditampilkan pada Tabel 2.

e. Sintesis mekanokimia

Metode mekanokimia dapat menghasilkan produk secara cepat, dan menggunakan sedikit
pelarut atau tanpa pelarut. Kelebihan dari metode sintesis mekanokimia adalah tidak menggunakan
pelarut sehingga dapat mengurangi dampak negatif ke lingkungan, waktu sintesis yang cepat, serta
memungkinkan untuk membentuk material melalui jalur yang sulit dicapai dari metode sintesis lain.
Metode ini memiliki tantangan untuk memperbesar skala reaksi sintesis MOF [36].

Tabel 2. Metode Sintesis MOF Berbasis Zn dan Parameter-Parameter Sintesis Metode Solvotermal

Kondisi Reaksi

MOF Prekursor Zn Pelarut Suhu Wakiu Ref.
MOF-5 Zn(NO3)2'6H>0 DMF 135°C 24 jam [37]
MOF-5 Zn(NOs3)2'6H>0 DMF 140°C 24 jam [38]
MOF-5 Zn(NO3)2'6H>0 DMF 130°C 19 jam [39]
MOF-5 Zn(NOs3)2'6H>0 DMF 150°C 6 jam [40]
MOF-5 Zn(CH3COO), DMF 125 °C 24 jam [41]
MOF-5 Zn(NOs3)2'6H>0 DMF 130°C 4 jam [42]
MOF-5 Zn(NO3)2'6H>0 DMF 110 °C 24 jam [43]
MOF-5 Zn(NOs3)2'6H>0 DMF 120 °C 25 jam [44]
ZIF-8 Zn(NO3)2'6H>0 DMF 140 °C 14 jam [45]
ZIF-4 Zn(NOs3)2'6H>0 DMF 150 °C 72 jam [46]
ZIF-8 Zn(NO3)2'6H>0 DMF 180 °C 6 jam [47]
Zn-5-amino- Zn(CH3COO);2H,0 Metanol- 80-100°C 4-12 jam [48]

1H-tetrazol asetonitril-air
Metode Kopresipitasi Suhu Ruang
Agen Waktu
MOF Prekursor Zn Pelarut . . Ref.
Deprotonasi reaksi
MOF-5 Zn(CH3COO),2H,0 DMF TEA 150 jam [49]
MOF-5 Zn(NO3)2'6H,0 DMF NaOH 24 jam [50]
MOF-5 Zn(NO3)2'6H>0 DMF TEA 120 menit  [51]
MOF-5 Zn(NO3)2'6H,0 DMF TEA 120 menit  [52]
MOF-5 Zn(NO3)2'6H>0 DMF TEA 60 menit [53]
MOF-5 Zn(NO3)2'6H,0 DMF TEA 45 menit [54]
MOF-5 Zn(CH3COO),2H>0 DMF TEA 150 menit  [55]
MOF-5 Zn(NO3)2'6H,0 DMF TEA 180 menit  [56]
MOF-5 Zn(NO3)2'6H,0O DMF TEA Beberapa  [57]
menit
MOF-5 Zn(NO3)2'6H,0 DMF triethanolamin 90 menit [58]
e

MOEF-5 Zn(CH3COO),2H>0 DMF TEA 150 menit  [59]
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ZIF-93 Zn(NO3)2'6H,0 Air NH4OH 18 jam [60]

ZIF-7 Zn(NO3)2"4H,0 Air NH;3 pekat 10 menit [61]

ZIF-8 Zn(NO3)2"4H,O Methanol - 60 menit [62]

ZIF-8 Zn(NO3)>'6H,O Air NaOH 60 menit [63]

Metode Sintesis Terbantu Gelombang Mikro (Microwave Assisted Synthesis)
MOF Prekursor Zn Pelarut Waktu Ref.
reaksi

ZIF-8 Zn(NO3)2'6H>0 DMF 5 menit [64]

Zn-Asam tereftalat Zn(CH3COO), Air 30 menit [65]

(TPA)

MOF-205 Zn(NOs3)2'4H>0 DEF 20 menit [66]

ZIF-8 ZnO Air, Air-DMF, Air- 30 menit [67]

metanol
Metode Sintesis Elektrokimia

MOF Prekursor Zn Pelarut Waktu Ref.

Zn-TPA Zn(NO3)2'6H,0 DMF-metanol 20 menit [68]

Zn-asam 1,3,5- Zn(NO3)2"6H20 Air-etanol 150 menit [69]

benzen

atrikarboksilat

(H3BTC)

Metode Sintesis Mekanokimia
MOF Prekursor Volume Kecepatan Ukuran ~ Waktu Ref.
reaktor  rotasi/vibrasi  ball mill

ZIF-8 Zn0;Zn(CH3COO0O)2'2H,0; 10mL 30 Hz 10mm 30 [70]
2-metilimidazol menit

ZIF-90 Zn0;Zn(CH3COO0O)2'2H,0; 10mL 30 Hz 10mm 30 [70]
2-imidazol karbaldehida menit

ZIF-94 Zn0;Zn(CH3;CO0)2"2H20; 25mL 20 Hz I5Smm 45 [70]
4-metil-1H-imidazol-5- menit
karbaldehida

ZIF-7 Zn0;Zn(CH3CO0O)>'2H,0; 10mL 30 Hz 10 mm 15 [70]
benzilimidazol menit

MOF-74 Zn0O; asam 2,5- 25mL  30Hz 7 gram 70 [70]
dihydroksitereftalat menit
(H4sHDTA)

MOF-5 Zn(CH3COO),"2H-0; 80 mL 1000 rpm 1I0mm 60 [71]
Asam tereftalat menit

MOF-5 Zn(CH3COO),"2H-0; 80 mL 1I0mm 60 [72]
Asam tereftalat menit

Strategi sintesis untuk meningkatkan aktivitas fotokatalitik
a. Doping dengan logam atau nonlogam

Logam yang didoping pada MOF dapat mendukung penyerapan cahaya oleh MOF serta
mempengaruhi mobilitas muatan [73]. Doping ion logam pada MOF yang memiliki aktivitas
penyerapan cahaya terbatas dapat menurunkan band-gap dari MOF [74]. Contoh dari strategi sintesis
ini telah dilakukan dengan doping Ag pada permukaan ZIF-8 yang meningkatkan aktifitas
fotokatalitik terhadap degradasi Methyl orange dan Methylene Blue dibandingkan dengan ZIF-8 saja
[75].
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b. Pembuatan Komposit MOF dengan Semikonduktor.

Komposit MOF dengan semikonduktor dapat meningkatkan fotosensitivitas dari MOF. Dalam
kasus ini, MOF dapat berperan dalam proses adsorpsi polutan yang selanjutnya akan mendukung
proses fotokatalisis [74]. MOF juga mendukung proses pemisahan muatan yang lebih efisien dari
material sehingga rekombinasi muatan dapat dikurangi secara signifikan [13]. Contoh dari komposit
ini adalah ZIF-8@Ti0O; yang memiliki aktivitas fotokatalitik yang lebih tinggi terhadap tetrvaasiklin
daripada TiOs.

c. Modifikasi Pasca-Sintesis (Post-Synthetic Modification)

Post-Synthetic Modification pada MOF dapat dilakukan dengan merekayasa logam atau ligan
pada suatu MOF sehingga memiliki sebuah fungsionalitas yang diharapkan. Contoh Post-Synthetic
Modification adalah pertukaran logam, pertukaran ligan atau penambahan sebuah gugus fungsi pada
linker MOF [76]. Contoh dari strategi ini adalah pembentukan gugus imina terminal pada ZIF-8
dengan menyinari sinar UV, yang menyebabkan serapan oleh MOF terjadi pada rentang cahaya
tampak [77].

Berbagai Polutan Organik yang didegradasi dengan material MOF berbasis Zn

Penelitian-penelitian yang memanfaatkan MOF berbasis Zn untuk degradasi fotokatalitik
polutan organik mencakup zat warna (dye), obat-obatan dan pestisida. Pewarna organik merupakan
jenis polutan organik yang paling banyak didegradasi dengan katalis MOF berbasis Zn. Penelitian
tentang degradasi obat-obatan juga dilakukan secara ekstensif karena efek khusus yang ditimbulkan.
Obat-obatan yang berada pada lingkungan dapat memiliki efek toksik kepada organisme non target
serta menyebabkan resistensi pada mikroba di perairan, terutama untuk obat-obatan antibiotik. Selain
zat pewarna dan obat-obatan, Pestisida merupakan jenis polutan yang perlu ditangani secara serius
karena memiliki ketahanan dan efek toksik yang tinggi diantara polutan organik lainnya. Penelitian-
penelitian yang memanfaatkan MOF berbasis Zn untuk degradasi fotokatalitik ditampilkan pada
Tabel 3.

Tabel 3. Jenis MOF dan aplikasinya dalam degradasi berbagai macampolutan organik
Zat Pewarna

MOF Zat pewarna Waktu Efisiensi Ref.
Degradasi
ZIF-8 KN-B 120 menit 95% [78]
ZIF-8/BiFeOs Rhodamine-B 90 menit 99,42% [79]
Ag>COs/ZIF-8 Rhodamine-B 50 menit 100% [80]
Nanopartikel Ag@ZIF-8 Methylene Blue dan 120 menit 97,25% dan [81]
Congo Red dan 40 menit  100%
MoSe@ZIF-8 Malachite Green 60 menit 100% [82]
TiO2@ZIF-8 Methylene  Blue dan 120 menit 87,5% dan [83]
Rhodamine B 64,85%

CuO-ZnO/ZIF-8 Acid Orange 7 100 menit 98,1% [84]
Zny(NHz-Asam Methyl Violet 40 menit 67,31% [85]
tereftalat)>(H20)

MOF—5 Methylene Blue 24 jam 85% [86]
MOF-5/Graphene Oxide Methylene Blue 390 menit 92% [87]
ZnO@MOF-5 Methylene Blue 210 menit 75,75% [88]
MOF-5/Bi,WOg Rhodamine-B 30 menit 99.,31% [89]

Obat-obatan
MOF Obat-obatan Waktu Efisiensi Ref.
Degradasi
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MoS2/ZIF-8 Ciprofloxacin dan 180 menit 93,2% dan [90]
tetracycline hydrochoride 75,6%
ZIF-8@ZIF-67 Ciprofloxacin, 120 menit 65%, 54%, dan  [91]
levofloxacin, dan 48%
ofloxacin
Ag/ZIF-8 Ciprofloxacin 90 menit 82,3% [92]
v-Fe203@ SiO2@ZIF§-Ag amoxicillin 60 menit 100% [93]
Gd@Zn-MOF Nitrofurantoin 120 menit 92,15% [94]
Ag>S-ZnS/ZIF-8 Tetracycline 10 menit 92,74% [95]
[Zn(meso—{5,10,15,20- Tetracycline 50 menit 95,5% [96]
tetrakis(4-
cyanophenyl)porphyrin} )(H
2 0)].3DMF
[Zn(tereftalat)(2,5- Nitrofurazone 60 menit 95,27% [97]
bis(pyrid-4 -
yl)pyridine)-3H>O]
Pestisida
MOF Pestisida Waktu Efisiensi Ref.
Degradasi
Fe304-COOH@ZIF- Diazinon 55 menit 63,4% [98]
8/Ag/Agi3PO4
CNC/ZIF-8/Ag Diquat 60 menit 95,62% [99]
Ti02/Z1F-8 Imidacloprid 240 menit 91,6% [100]

Tantangan Pemanfaatan Mof Berbasis Zn dalam Degradasi Polutan Organik

Tantangan utama dalam pemanfaatan MOF sebagai fotokatalisis adalah kestabilan pada
lingkungan. Beberapa MOF seperti ZIF-8 dan MOF-5 memiliki Beberapa MOF-5 memiliki
ketidakstabilan pada kelembapan, karena dapat memicu degradasi hidrolitik yang selanjutnya
merusak struktur kerangka MOF [101]. MOF berbasis Zn yang berkoordinasi melalui gugus
karboksilat lebih rentan terhadap degradasi daripada MOF dari kelompok ZIF yang terikat melalui
gugus azolat [12]. Disisi lain, MOF berbasis Zn umumnya tidak memiliki aktivitas semikonduktor
yang baik [13].

Untuk mengatasi hal-hal tersebut, strategi dalam mendesain ataupun meningkatkat efektivitas
harus mempertimbangkan gugus fungsi yang sesuai untuk mempertahankan kestabilan MOF berbasis
Zn , serta mengkombinasikan MOF berbasis Zn dengan strategi doping atau komposit untuk
meningkatkan sensitivitas terhadap cahaya dan meningkatkan ketahanannya pada lingkungan.

KESIMPULAN

MOF berbasis Zn memiliki potensi dalam degradasi fotokatalitik polutan orgnaik.. MOF dapat
menjadi fotokatalis atau berperan sebagai pembawa dari zat fotoaktif. MOF berbasis Zn dapat
disintesis dengan metode solvotermal, kopresipitasi suhu ruang, sintesis terbantu gelombang mikro,
sintesis elektrokimia, dan mekanokimiak. Untuk meningkatkan aktivitas fotokatalitik dari MOF
berbasis Zn,dapat dilakukan dengan doping, pembuatan komposit, serta modifikasi pasca sintesis.
Adapun tantangan dalam penggunaan MOF berbasis Zn adalah kestabilan yang rendah dan aktivitas
fotokatalitik yang terbatas, sehingga strategi sintesis untuk meningkatkan kestabilan dan aktivitas
perlu dikaji secara mendalam untuk sintesis material MOF berbasis Zn.
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