MINI REVIEW: POTENSI FLORA SULAWESI SELATAN UNTUK SINTESIS NANOPARTIKEL RAMAH LINGKUNGAN
Abstract
South Sulawesi harbors a high diversity of plant species, including several endemic taxa with substantial potential for the development of environmentally sustainable nanomaterials. Among emerging approaches, the green synthesis of nanoparticles using plant extracts as bioreducing and capping agents has gained significant attention due to its simplicity, low cost, and alignment with green chemistry principles. This mini-review provides an overview of recent advancements in the biosynthesis of nanoparticles mediated by local and endemic plant species from South Sulawesi. The review highlights the role of phytochemicals in nanoparticle formation, the characterization methods employed, and their potential applications in biomedical, catalytic, and environmental fields. Furthermore, it discusses the current challenges, including standardization of plant extracts, control over nanoparticle morphology, and scalability of the process. The findings emphasize the untapped potential of South Sulawesi flora as a promising biological resource for sustainable nanoparticle synthesis and encourage further interdisciplinary research in this area.
Downloads
References
(1) Selmani, A.; Kovačević, D.; Bohinc, K. Nanoparticles: From Synthesis to Applications and Beyond. Adv. Colloid Interface Sci. 2022, 303, 102640. https://doi.org/10.1016/j.cis.2022.102640.
(2) Astruc, D. Introduction: Nanoparticles in Catalysis. Chem. Rev. 2020, 120 (2), 461–463. https://doi.org/10.1021/acs.chemrev.8b00696.
(3) Nicolae-Maranciuc, A.; Chicea, D.; Chicea, L. M. Ag Nanoparticles for Biomedical Applications—Synthesis and Characterization—A Review. Int. J. Mol. Sci. 2022, 23 (10), 5778. https://doi.org/10.3390/ijms23105778.
(4) Afzal, O.; Altamimi, A. S. A.; Nadeem, M. S.; Alzarea, S. I.; Almalki, W. H.; Tariq, A.; Mubeen, B.; Murtaza, B. N.; Iftikhar, S.; Riaz, N.; Kazmi, I. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. Nanomaterials 2022, 12 (24), 4494. https://doi.org/10.3390/nano12244494.
(5) Kartika, A. E.; Setiyanto, H.; Manurung, R. V.; Jenie, S. N. A.; Saraswaty, V. Silver Nanoparticles Coupled with Graphene Nanoplatelets Modified Screen-Printed Carbon Electrodes for Rhodamine B Detection in Food Products. ACS Omega 2021, 6 (47), 31477–31484. https://doi.org/10.1021/acsomega.1c03414.
(6) Gupta, V.; Mohapatra, S.; Mishra, H.; Farooq, U.; Kumar, K.; Ansari, M.; Aldawsari, M.; Alalaiwe, A.; Mirza, M.; Iqbal, Z. Nanotechnology in Cosmetics and Cosmeceuticals—A Review of Latest Advancements. Gels 2022, 8 (3), 173. https://doi.org/10.3390/gels8030173.
(7) Soni, V.; Raizada, P.; Singh, P.; Cuong, H. N.; S, R.; Saini, A.; Saini, R. V.; Le, Q. Van; Nadda, A. K.; Le, T.-T.; Nguyen, V.-H. Sustainable and Green Trends in Using Plant Extracts for the Synthesis of Biogenic Metal Nanoparticles toward Environmental and Pharmaceutical Advances: A Review. Environ. Res. 2021, 202, 111622. https://doi.org/10.1016/j.envres.2021.111622.
(8) Saadh, M. J.; Muhammad, F. A.; Albadr, R. J.; Bishoyi, A. K.; Ballal, S.; Bareja, L.; Naidu, K. S.; Rizaev, J.; Taher, W. M.; Alwan, M.; Jawad, M. J.; Ali Al-Nuaimi, A. M. Nanoparticle Biosensors for Cardiovascular Disease Detection. Clin. Chim. Acta 2025, 567, 120094. https://doi.org/10.1016/j.cca.2024.120094.
(9) Joudeh, N.; Linke, D. Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists. J. Nanobiotechnology 2022, 20 (1), 262. https://doi.org/10.1186/s12951-022-01477-8.
(10) Hong, W.; Guo, F.; Yu, N.; Ying, S.; Lou, B.; Wu, J.; Gao, Y.; Ji, X.; Wang, H.; Li, A.; Wang, G.; Yang, G. A Novel Folic Acid Receptor-Targeted Drug Delivery System Based on Curcumin-Loaded β-Cyclodextrin Nanoparticles for Cancer Treatment. Drug Des. Devel. Ther. 2021, Volume 15, 2843–2855. https://doi.org/10.2147/DDDT.S320119.
(11) Feng, Y.; Song, K.; Zhang, W.; Zhou, X.; Yoo, S. J.; Kim, J.-G.; Qiao, S.; Qi, Y.; Zou, X.; Chen, Z.; Qin, T.; Yue, N.; Wang, Z.; Li, D.; Zheng, W. Efficient ORR Catalysts for Zinc-Air Battery: Biomass-Derived Ultra-Stable Co Nanoparticles Wrapped with Graphitic Layers via Optimizing Electron Transfer. J. Energy Chem. 2022, 70, 211–218. https://doi.org/10.1016/j.jechem.2022.01.047.
(12) Taghavi Fardood, S.; Moradnia, F.; Yekke Zare, F.; Heidarzadeh, S.; Azad Majedi, M.; Ramazani, A.; Sillanpää, M.; Nguyen, K. Green Synthesis and Characterization of α-Mn2O3 Nanoparticles for Antibacterial Activity and Efficient Visible-Light Photocatalysis. Sci. Rep. 2024, 14 (1), 6755. https://doi.org/10.1038/s41598-024-56666-2.
(13) Hassan, S. S. M.; El-Aziz, M. E. A.; Fayez, A. E.-S.; Kamel, A. H.; Youssef, A. M. Synthesis and Characterization of Bio-Nanocomposite Based on Chitosan and CaCO3 Nanoparticles for Heavy Metals Removal. Int. J. Biol. Macromol. 2024, 255, 128007. https://doi.org/10.1016/j.ijbiomac.2023.128007.
(14) Singh, P.; Kim, Y.-J.; Zhang, D.; Yang, D.-C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34 (7), 588–599. https://doi.org/10.1016/j.tibtech.2016.02.006.
(15) Jadoun, S.; Arif, R.; Jangid, N. K.; Meena, R. K. Green Synthesis of Nanoparticles Using Plant Extracts: A Review. Environ. Chem. Lett. 2021, 19 (1), 355–374. https://doi.org/10.1007/s10311-020-01074-x.
(16) Bahrulolum, H.; Nooraei, S.; Javanshir, N.; Tarrahimofrad, H.; Mirbagheri, V. S.; Easton, A. J.; Ahmadian, G. Green Synthesis of Metal Nanoparticles Using Microorganisms and Their Application in the Agrifood Sector. J. Nanobiotechnology 2021, 19 (1), 86. https://doi.org/10.1186/s12951-021-00834-3.
(17) Chugh, D.; Viswamalya, V. S.; Das, B. Green Synthesis of Silver Nanoparticles with Algae and the Importance of Capping Agents in the Process. J. Genet. Eng. Biotechnol. 2021, 19 (1), 126. https://doi.org/10.1186/s43141-021-00228-w.
(18) Butarbutar, R. R. Pengaruh Aktivitas Wisatawan Terhadap Keanekaragaman Tumbuhan Di Sulawesi. J. Indones. Tour. Dev. Stud. 2013, 1 (2), 87–96. https://doi.org/10.21776/ub.jitode.2013.001.02.06.
(19) Ramakrishna, M.; Rajesh Babu, D.; Gengan, R. M.; Chandra, S.; Nageswara Rao, G. Green Synthesis of Gold Nanoparticles Using Marine Algae and Evaluation of Their Catalytic Activity. J. Nanostructure Chem. 2016, 6 (1), 1–13. https://doi.org/10.1007/s40097-015-0173-y.
(20) Gawade, V. V.; Gavade, N. L.; Shinde, H. M.; Babar, S. B.; Kadam, A. N.; Garadkar, K. M. Green Synthesis of ZnO Nanoparticles by Using Calotropis Procera Leaves for the Photodegradation of Methyl Orange. J. Mater. Sci. Mater. Electron. 2017, 28 (18), 14033–14039. https://doi.org/10.1007/s10854-017-7254-2.
(21) Tailor, G.; Yadav, B. L.; Chaudhary, J.; Joshi, M.; Suvalka, C. Green Synthesis of Silver Nanoparticles Using Ocimum Canum and Their Anti-Bacterial Activity. Biochem. Biophys. Reports 2020, 24, 100848. https://doi.org/10.1016/j.bbrep.2020.100848.
(22) Garibo, D.; Borbón-Nuñez, H. A.; de León, J. N. D.; García Mendoza, E.; Estrada, I.; Toledano-Magaña, Y.; Tiznado, H.; Ovalle-Marroquin, M.; Soto-Ramos, A. G.; Blanco, A.; Rodríguez, J. A.; Romo, O. A.; Chávez-Almazán, L. A.; Susarrey-Arce, A. Green Synthesis of Silver Nanoparticles Using Lysiloma Acapulcensis Exhibit High-Antimicrobial Activity. Sci. Rep. 2020, 10 (1), 12805. https://doi.org/10.1038/s41598-020-69606-7.
(23) Balalakshmi, C.; Gopinath, K.; Govindarajan, M.; Lokesh, R.; Arumugam, A.; Alharbi, N. S.; Kadaikunnan, S.; Khaled, J. M.; Benelli, G. Green Synthesis of Gold Nanoparticles Using a Cheap Sphaeranthus Indicus Extract: Impact on Plant Cells and the Aquatic Crustacean Artemia Nauplii. J. Photochem. Photobiol. B Biol. 2017, 173, 598–605. https://doi.org/10.1016/j.jphotobiol.2017.06.040.
(24) Gurubasavaraj, P. M. Effect of Concentration and PH on the Size of Silver Nanoparticles Synthesized by Green Chemistry. Org. Med. Chem. Int. J. 2017, 3 (5). https://doi.org/10.19080/OMCIJ.2017.03.555622.
(25) Wasly, H. S.; El-Sadek, M. S. A.; Henini, M. Influence of Reaction Time and Synthesis Temperature on the Physical Properties of ZnO Nanoparticles Synthesized by the Hydrothermal Method. Appl. Phys. A 2018, 124 (1), 76. https://doi.org/10.1007/s00339-017-1482-4.
(26) Ibrahim, S. S. S.; Ansari, Y. N.; Puri, A. V.; Patil, V. V.; Gaikwad, S. S.; Haroon, R. A. Recent Progress in the Green Synthesis, Characterization, and Applications of Selenium Nanoparticles. BIO Integr. 2024, 5 (1). https://doi.org/10.15212/bioi-2024-0063.
(27) Natrayan, L.; Karthick, M.; Krishna, C. B.; Velmurugan, G.; Chaithanya, M. S.; Maranan, R.; Mammo, W. D. Experimental Investigation of Photocatalytic Degradation and Antioxidant Activities of Biosynthesized Gold Nanoparticles from Royal Poinciana Tree Leaves. Discov. Appl. Sci. 2025, 7 (8), 838. https://doi.org/10.1007/s42452-025-07238-0.
(28) Revathi, S.; Sutikno, S.; Hasan, A. F.; Altemimi, A. B.; ALKaisy, Q. H.; Phillips, A. J.; Hesarinejad, M. A.; Abedelmaksoud, T. G. Green Synthesis and Characterization of Silver Nanoparticles (AgNP) Using Acacia Nilotica Plant Extract and Their Anti-Bacterial Activity. Food Chem. Adv. 2024, 4, 100680. https://doi.org/10.1016/j.focha.2024.100680.
(29) Rotimi, L.; Ojemaye, M. O.; Okoh, O. O.; Sadimenko, A.; Okoh, A. I. Synthesis, Characterization, Antimalarial, Antitrypanocidal and Antimicrobial Properties of Gold Nanoparticle. Green Chem. Lett. Rev. 2019, 12 (1), 61–68. https://doi.org/10.1080/17518253.2019.1569730.
(30) Vandarkuzhali, S. A. A.; Karthikeyan, G.; Pachamuthu, M. P. Microwave Assisted Biosynthesis of Borassus Flabellifer Fruit Mediated Silver and Gold Nanoparticles for Dye Reduction, Antibacterial and Anticancer Activity. J. Environ. Chem. Eng. 2021, 9 (6), 106411. https://doi.org/10.1016/j.jece.2021.106411.
(31) Antasionasti, I.; Jayanto, I.; Abdullah, S. S.; Siampa, J. P. KARAKTERISASI NANOPARTIKEL EKSTRAK ETANOL KAYU MANIS (Cinnamomum Burmanii) DENGAN KITOSAN SODIUM TRIPOLIFOSFAT SEBAGAI KANDIDAT ANTIOKSIDAN. Chem. Prog. 2020, 13 (2). https://doi.org/10.35799/cp.13.2.2020.31392.
(32) Kamarudin, N. S.; Jusoh, R.; Setiabudi, H. D.; Jusoh, N. W. C.; Jaafar, N. F.; Sukor, N. F. Cymbopogon Nardus Mediated Synthesis of Ag Nanoparticles for the Photocatalytic Degradation of 2,4-Dicholorophenoxyacetic Acid. Bull. Chem. React. Eng. Catal. 2019, 14 (1), 173–181. https://doi.org/10.9767/bcrec.14.1.3321.173-181.
(33) N. Ariani; Y.A. Devy; Aspiyanto; Andreas; A. Darmawan; Juliansyah; M. Azzumar; Habibie, M. H.; N. Hamim; O. Zuas; T. Sudiro; Hardono; G. Soehadi. ANTIMICROBIAL POTENTIAL OF GOLD NANOPARTICLES BIOSYNTHESIZED USING WATER EXTRACT OF DIOSPYROS CELEBICA SEEDS: SYNTHESIS AND CHARACTERIZATION. RASAYAN J. Chem. 2025, 18 (01), 593–599. https://doi.org/10.31788/RJC.2025.1819156.
(34) Saha, P.; Mahiuddin, M.; Islam, A. B. M. N.; Ochiai, B. Biogenic Synthesis and Catalytic Efficacy of Silver Nanoparticles Based on Peel Extracts of Citrus Macroptera Fruit. ACS Omega 2021, 6 (28), 18260–18268. https://doi.org/10.1021/acsomega.1c02149.
(35) Putri, G. E.; Labanni, A.; Arief, S.; Dafriani, P.; Darma, I. Y.; Handayani, S.; Widyastuti; Jaffar, N.; Mahmud, M.; Ritonga, A. H. Green Synthesis of Cerium Oxide Nanoparticles Using Citrus Nobilis Lour. Peel Extract and Evaluation of Their Potential as Antibacterial and Antioxidant Agents. Case Stud. Chem. Environ. Eng. 2025, 11, 101062. https://doi.org/10.1016/j.cscee.2024.101062.
(36) Shukla, M.; Narain, S.; Kumar, A.; Dikshit, A. Characterization of Titanium Dioxide Nanomaterials Synthesized from Leaf Extract of Pogostemon Cablin Benth and Their Potential Antifungal Activity. Phys. Scr. 2024, 99 (6), 0659d3. https://doi.org/10.1088/1402-4896/ad4dea.
(37) Chheda, T. J.; Govindasamy, R.; Selvam, S. P.; Viswanathan, D. Green Synthesis of Europium Oxide Nanoparticles via Vitex Trifolia: Biomedical Applications in Infection Control and Cancer Therapy. Pharmacol. Res. - Mod. Chinese Med. 2025, 16, 100652. https://doi.org/10.1016/j.prmcm.2025.100652.
(38) Sarala, E.; Vinuth, M.; Naik, M. M.; Reddy, Y. V. R. Green Synthesis of Nickel Ferrite Nanoparticles Using Terminalia Catappa: Structural, Magnetic and Anticancer Studies against MCF-7 Cell Lines. J. Hazard. Mater. Adv. 2022, 8, 100150. https://doi.org/10.1016/j.hazadv.2022.100150.
(39) Le, T. P.; Nguyen, N. H.; Le, V. K.; Pham, P.-Q.; Duong, T. B. N.; Le, Q. N. N.; Nguyen, T. C. T.; Ung, T. D. T.; Pham, A. T. T.; Nguyen, L. H. T.; Mai, N. X. D.; Nguyen, L. T. M.; Pham, N. K. Enhancement of Antibacterial Activities of Green Synthesized-CuO/ZnO Nanocomposites Using Boehmeria Nivea Leaf Extract. Biointerphases 2024, 19 (6). https://doi.org/10.1116/6.0003858.
(40) Velincia Tanriono, L.; Hayati, F.; Zubair, M. S. Begonia Medicinalis: A Review of Phytochemistry and Pharmacology. J. Ilm. Farm. 2024, 20 (1), 31–42. https://doi.org/10.20885/jif.vol20.iss1.art3.
(41) Shriram, V.; Kumar, V. Eulophia Spp.: In Vitro Generation, Chemical Constituents, and Pharmacological Activities; 2021; pp 1–23. https://doi.org/10.1007/978-3-030-11257-8_31-1.
(42) Dawande, V. R.; Gurav, R. V. Qualitative Analysis of Phytochemical in Eulophia Nuda Using LCMS. ~ 136 ~ J. Med. Plants Stud. 2021, 9 (3), 136–140.
(43) Victor, I.; Orsat, V. Characterization of Arenga Pinnata (Palm) Sugar. Sugar Tech 2018, 20 (1), 105–109. https://doi.org/10.1007/s12355-017-0537-3.
(44) Edo, G. I.; Mafe, A. N.; Ali, A. B. M.; Akpoghelie, P. O.; Yousif, E.; Isoje, E. F.; Igbuku, U. A.; Ismael, S. A.; Essaghah, A. E. A.; Ahmed, D. S.; Ozsahin, D. U.; Umar, H.; Alamiery, A. A. Green Biosynthesis of Nanoparticles Using Plant Extracts: Mechanisms, Advances, Challenges, and Applications. Bionanoscience 2025, 15 (2), 267. https://doi.org/10.1007/s12668-025-01883-w.
(45) Gavhane, K. D.; Kharat, M. G.; Gawali, N. B.; Anwane, H.; Mhaske, S. International Journal of Research Publication and Reviews Green Synthesis of Nanoparticles : A Sustainable Approach to Nanotechnology. 2025, 6 (5), 18616–18631.
(46) Abbasi, R.; Shineh, G.; Mobaraki, M.; Doughty, S.; Tayebi, L. Structural Parameters of Nanoparticles Affecting Their Toxicity for Biomedical Applications: A Review. J. Nanoparticle Res. 2023, 25 (3), 43. https://doi.org/10.1007/s11051-023-05690-w.
(47) Subhani, A. A.; Irshad, M.; Ali, S.; Jawad, M.; Akhtar, M. F.; Summer, M. UV-Spectrophotometric Optimization of Temperature, PH, Concentration and Time for Eucalyptus Globulus Capped Silver Nanoparticles Synthesis, Their Characterization and Evaluation of Biological Applications. J. Fluoresc. 2024, 34 (2), 655–666. https://doi.org/10.1007/s10895-023-03260-w.
(48) Sreelatha, K.; AnandaKumar, C. S.; Saraswathi, M.; Anusha, P.; Rose, N. M.; Bhargava, D. A Comprehensive Review of Nanoparticle Characterization Techniques. Int. J. Res. Rev. 2025, 12 (1), 194–200. https://doi.org/10.52403/ijrr.20250124.
(49) Ratti, R. Industrial Applications of Green Chemistry: Status, Challenges and Prospects. SN Appl. Sci. 2020, 2 (2), 263. https://doi.org/10.1007/s42452-020-2019-6.