Molecular Structure And Electronic Properties Of Eugenol And Its Analogues Using Dft

Authors

  • Mirella Fonda Maahury Kimia, FMIPA, Universitas Pattimura
  • Muhammad Abdulkadir Martoprawiro Jurusan Kimia, Fakultas MIPA, Institut Teknologi Bandung, Bandung, Indonesia
  • Veliyana Londong Allo Jurusan Kimia FMIPA Universitas Mulawarman

DOI:

https://doi.org/10.30872/jkm.v19i2.1123

Keywords:

Eugenol, Methyl Eugenol, Atomic Charge,, HOMO, LUMO

Abstract

Eugenol is the active molecule naturally found in clove oil. The calculations have been done for the eugenol and its derivatives computationally. This computational calculation aims to obtain a stable structure and electronic properties of eugenol, methyl eugenol, and acetyl eugenol. The computational calculation used DFT for geometry optimization in the gas phase using B3LYP functional and 6-31G(d) as the basis set. The optimized structure of eugenol and its derivatives is not planar. The presence of methoxy replacing hydroxy increases the bond length and decreases the bond angle and the dihedral. The electronic properties such as atomic charge and density of HOMO-LUMO show the difference between the three molecules.

Downloads

Download data is not yet available.

References

[1] Pusat Penelitian dan Pengembangan Perkebunan, “Cengkih Berpotensi sebagai Pestisida Nabati,” Warta Penelitian dan Pengembangan Pertanian, vol. 31, no. 6, 2009.
[2] H.-H. Leem, E.-O. Kim, M.-J. Seo, and S.-W. Choi, “Antioxidant and Anti-Inflammatory Activities of Eugenol and Its Derivatives from Clove (Eugenia caryophyllata Thunb.),”Journal of the Korean Society of Food Science and Nutrition, vol. 40, Oct. 2011, doi:10.3746/jkfn.2011.40.10.1361.
[3] S. M. de Morais et al., “Thymol and eugenol derivatives as potential antileishmanial agents,” Bioorganic & edicinal Chemistry, vol. 22, no. 21, pp. 6250–6255, Nov. 2014, doi:10.1016/j.bmc.2014.08.020.
[4] Y. T. Male, I. W. Sutapa, M. F. Maahury, M. Jamal, and D. Male, “Computational Study Potency of Eugenol and Safrole Derivatives as Active Sunscreen Material,” molekul, vol. 17, no. 1, pp. 39–48, Mar. 2022, doi:10.20884/1.jm.2022.17.1.5574.
[5] M. A. Kurniawan, S. Matsjeh, and S. Triono, “Conversion of eugenol to methyleugenol:Computational study and experimental,” in AIP Conference Proceedings, Las Vegas, Nevada, USA, 2017, p. 020109. doi: 10.1063/1.4978182. [6] M. F. Maahury and M. A. Martoprawiro, “Computational Study of Anthocyanin as Active Material in Dye-Sensitized Solar Cell,”J. Phys.: Conf. Ser., vol. 1463, no. 1, p. 012014, Feb. 2020, doi: 10.1088/1742- 6596/1463/1/012014.
[7] M. F. Maahury, Y. T. Male, and M. A. Martoprawiro, “DFT Study of Leuco-Indigo and Indigo as Active Material in Dye- Sensitized Solar Cell,” Molekul, vol. 15, no. 2, p. 114, Jul. 2020, doi:10.20884/1.jm.2020.15.2.592.

Downloads

Published

2022-05-31

Issue

Section

Artikel