STUDI AB INITIO GRAFIT BATUBARA SEBAGAI MATERI PENYIMPAN HIDROGEN

  • Rahmat Gunawan Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman
  • Melanie David Division of Precision Science and Technology and Applied Physics Osaka University, Suita, Osaka, 565-0871, Japan
  • Hideaki Kasai Division of Precision Science and Technology and Applied Physics Osaka University, Suita, Osaka, 565-0871, Japan
  • Muhammad A. Martoprawiro Kelompok Keahlian Kimia Fisik dan Anorganik, Institut Teknologi Bandung
  • Cynthia L. Radiman Kelompok Keahlian Kimia Fisik dan Anorganik, Institut Teknologi Bandung
  • Herman K. Dipojono Laboratorium Computational Material Design-Quantum Engineering Institut Teknologi Bandung

Abstract

Calculation of density functional theory (DFT) is carried out to investigate the adsorption of six molecules of H2 molecules on a graphite planar layer with a doping of alkali metal (Li, Na, and K). We reported that the DFT-GGA method, the presence of alkali metals on graphite, and H2-(GICs), have changed the interaction and the electronic system. We also reported that the ratio increased electron transfer from K to Na and Li. The calculation of the charge density shows that the increase in energy due to the transfer of electrical charge from GICs to six molecules of H2. This changes the electronic properties of graphite that are important in applications such as hydrogen storage.

Keywords: Molecule Hydrogen, Graphite Intercalated Compounds, Density Functional Theory

Downloads

Download data is not yet available.

References

Nikitin, A., Ogasawara, H., Mann, D., Denecke, R., Zhang, Z., Dai, H., Cho, K., dan Nilsson, A., (2005): Hydrogenation of Single-Walled Carbon Nanotubes, Phys. Rev. Lett., 95, 225507(1–4).
Cheng, H., Chen, L., Cooper, A. C., Shaa, X., dan Pez, G. P., (2008): Hydrogen spillover in the context of hydrogen storage using solid-state materials, Energy Environ. Sci., 1, 338–354.
Chambers, A., Park, C., Baker, R. T. K., dan Rodriguez, N. M., (1998): Hydrogen storage in graphite nano?bers, J. Phys. Chem. B., 102, 4253–4256.
Park, C., Anderson, P. E., Chambers, A., Tan, C. D., Hidalgo, R., dan Rodriguez, N. M., (1999): Further studies of the interaction of hydrogen with graphite nano?bers, J. Phys. Chem. B., 103, 10572–10581.
Browning, D. J., Gerrard, M. L., Lakeman, J. B., Mellor, I. M., Mortimer, R. J., dan Turpin, M. C., (2002): Studies into the Storage of Hydrogen in Carbon Nano?bers: Proposal of a Possible Reaction Mechanism, Nano Lett., 2(3), 201–205.
Atkinson, K., Roth, S., Hirscher, M., dan Grünwald, W., (2001): Carbon nanostructures: An e?cient hydrogen storage medium for fuel cells?, Fuel Cells Bulletin, 38, 9–12.
Di?o, W. A., Nakanishi, H., Kasai, H., Sugimoto, T., dan Kondo, T., (2004): H2 Dissociative Adsorption at the Zigzag Edges of Graphite, e-J. Surf. Sci. Nanotech., 2, 77–80.
Ataca, C., Aktürk, E., Ciraci, S., dan Ustunel, H., (2008): High-capacity hydrogen storage by metallized graphene, App. Phys. Lett., 93, 043123(1–3).
Published
2016-02-23
How to Cite
GUNAWAN, Rahmat et al. STUDI AB INITIO GRAFIT BATUBARA SEBAGAI MATERI PENYIMPAN HIDROGEN. JURNAL KIMIA MULAWARMAN, [S.l.], v. 8, n. 1, feb. 2016. ISSN 2476-9258. Available at: <http://jurnal.kimia.fmipa.unmul.ac.id/index.php/JKM/article/view/77>. Date accessed: 07 june 2020.
Section
Artikel