Synthesis and Characterization of Copper(II) Oxide (CuO-NP) Nanoparticles using Chemical Precipitation Method

  • Charlena Charlena Department of Chemistry IPB University
  • Sri Sugiarti Chemistry Department FMIPA IPB University
  • Dila Ardiansyah Chemistry Department FMIPA IPB University

Abstract

This study aims to optimize the calcination temperature and see the effect of adding surfactant on the bandgap, particle size, crystallinity level of CuO nanoparticles (CuO-NP), and the activity of CuO nanoparticles as an antibacterial agent. CuO-NP was successfully synthesized using the chemical precipitation method with variations in calcination temperature of 400, 600, and 800 °C with NaOH as a precipitating agent. The synthesized nanoparticles were further characterized using a UV-Vis, XRD, and SEM-EDX spectrophotometer. The value of the CuO-NP bandgap increases with increasing temperature. The bandgap gets bigger when the absorbance value gets smaller. Increasing the calcination temperature causes the crystal size of CuO-NP to become larger. The best level of crystallinity of CuO-NP was obtained at 68,31% with a calcination temperature of 600 °C. Adding 1% PVP did not significantly prevent agglomeration between CuO-NP particles, thereby increasing the size of CuO-NP particles.


Keywords: bandgap, CuO-NP, PVP, temperature

Downloads

Download data is not yet available.

References

[1] K. H. Chan and K.-Y. Yuen, “COVID-19 epidemic: disentangling the re-emerging controversy about medical facemasks from an epidemiological perspective,” International Journal of Epidemiology, vol. 49, no. 4, pp. 1063–1066, Mar. 2020, doi: 10.1093/ije/dyaa044.
[2] A. K. Chatterjee, R. Chakraborty, and T. Basu, “Mechanism of antibacterial activity of copper nanoparticles,” Nanotechnology, vol. 25, no. 13, p. 135101, Feb. 2014, doi: 10.1088/0957-4484/25/13/135101.
[3] P. Merkl, S. Long, G. M. McInerney, and G. A. Sotiriou, “Antiviral Activity of Silver, Copper Oxide and Zinc Oxide Nanoparticle Coatings against SARS-CoV-2,” Nanomaterials, vol. 11, no. 5, p. 1312, May 2021, doi: 10.3390/nano11051312.
[4] K. S. Kavitha, S. Baker, D. Rakshith, H. U. Kavitha, B. P. Harini, and S. Satish, “Plants as Green Source towards Synthesis of Nanoparticles,” International Research Journal of Biological Sciences, vol. 2, no. 6, pp. 66–76, Jun. 2013, [Online]. Available: http://www.isca.in/IJBS/Archive/v2/i6/14.ISCA-IRJBS-2013-048.pdf
[5] A. Masykuroh and H. Puspitasari, “Potensi tanaman keladi sarawak Alocasia macrorrhizos dalam biosintesis nanopartikel perak (NNP): analisis surface plasmon resonance (SPR) sebagai fungsi waktu,” Bioma. Vol. 5, No. 2, pp. 233‒240, 2020.
[6] Willems and V. D. Wildenberg, “Roadmap Report on Nanoparticle,” Barcelona (ESP): W&W Españas, 2005.
[7] D. P. Singh and N. Ali, “Synthesis of TiO2 and CuO nanotubes and nanowires,” Science of Advanced Materials, vol. 2, no. 3, pp. 295–335, Sep. 2010, doi: 10.1166/sam.2010.1095.
[8] I. Z. Luna, L. N. Hilary, A. M. S. Chowdhury, M. A. Gafur, N. Khan, and R. A. Khan, “Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method,” OAlib, vol. 02, no. 03, pp. 1–8, Jan. 2015, doi: 10.4236/oalib.1101409.
[9] V. D. Kulkarni and P. S. Kulkarni, “Green Synthesis of Copper Nanoparticles Using Ocimum Sanctum Leaf Extract,” International Journal of Chemical Studies, vol. 1, no. 3, pp. 01–04, Oct. 2013, [Online]. Available: https://www.chemijournal.com/vol1Issue3/sep2013/12.1.pdf
[10] F. S. Arakawa, Q. L. Shimabuku-Biadola, M. F. Silva, and R. Bergamasco, “Development of a new vacuum impregnation method at room atmosphere to produce silver–copper oxide nanoparticles on activated carbon for antibacterial applications,” Environmental Technology, vol. 41, no. 18, pp. 2400–2411, Jan. 2019, doi: 10.1080/09593330.2019.1567607.
[11] M. Salavati-Niasari and F. Davar, “Synthesis of copper and copper(I) oxide nanoparticles by thermal decomposition of a new precursor,” Materials Letters, vol. 63, no. 3–4, pp. 441–443, Feb. 2009, doi: 10.1016/j.matlet.2008.11.023.
[12] K. Phiwdang, S. Suphankij, W. Mekprasart, and W. Pecharapa, “Synthesis of CUO nanoparticles by precipitation method using different precursors,” Energy Procedia, vol. 34, pp. 740–745, Jan. 2013, doi: 10.1016/j.egypro.2013.06.808.
[13] N. Rahayu, G. Gusrizal, and N. Nurlina, “Ekstrak Umbi Bawang Dayak (Eleutherine palmifolia (L.) Merr.) sebagai Pereduksi Ion Perak dalam Sintesis Nanopartikel Perak,” Indonesian Journal of Pure and Applied Chemistry, vol. 3, no. 3, p. 17, Apr. 2021, doi: 10.26418/indonesian.v3i3.44151.
[14] D. Triwardiati and I. R. Ermawati, “Analisis Bandgap Karbon Nanodots (C-Dots) Kulit Bawang Merah Menggunakan Teknik Microwave,” in Pros. SemNas. Teknoka, Vol. 3, pp. E25-E30, 2018. [Online]. Available: https://journal.uhamka.ac.id/index.php/teknoka/article/view/2810.
[15] T. H. Tran and V. T. Nguyen, “Copper Oxide nanomaterials Prepared by solution methods, some properties, and potential applications: A Brief review,” International Scholarly Research Notices, vol. 2014, pp. 1–14, Dec. 2014, doi: 10.1155/2014/856592.
[16] N. H. Efendi, and H. Sutanto, "Pengaruh Temperatur Sintering terhadap Sifat Optik Lapisan Tipis Zinc Oxide (Zno) yang Dideposisi Diatas Substrat Kaca dan Aplikasinya untuk Mendegradasi Pewarna Methylene Blue," Youngster Physics Journal, vol. 3, no. 2, pp. 135-142, Apr. 2014. [Online]. Retrieved from : https://ejournal3.undip.ac.id/index.php/bfd/article/view/5286.
[17] A. Sedky, T. A. El-Brolossy, and S. B. Mohamed, “Correlation between sintering temperature and properties of ZnO ceramic varistors,” Journal of Physics and Chemistry of Solids, vol. 73, no. 3, pp. 505–510, Mar. 2012, doi: 10.1016/j.jpcs.2011.11.035.
[18] M. M. Y. Missa, R. K. Pingak, and H. I. Sutaji, “Penentuan Celah Energi Optik Ekstrak Daun Alpukat (Persea Americana Mill) Asal Desa Oinlasi menggunakan Metode Tauc Plot,” Jurnal Fisika/Jurnal Fisika : Fisika Sains Dan Aplikasinya, vol. 3, no. 1, pp. 86–90, Dec. 2018, doi: 10.35508/fisa.v3i1.606.
[19] G. L. Miessler, P. J. Fischer, and D. A. Tarr, Inorganic chemistry 5th Ed, US: Pearson Higher Ed, 2014, pp. 214-241.
[20] I. M. E. Nahhal, A. A. Elmanama, and N. M. Amara, “Synthesis of Nanometal Oxide–Coated Cotton composites,” in Cotton Research, I. Y. Abdurakhmonov, Ed. InTech eBooks, 2016. doi: 10.5772/63505.
[21] A. D. Rosanti, A. R. K. Wardani, and H. A. Anggraeni, “Pengaruh Suhu Kalsinasi terhadap Karakteristik dan Aktivitas Fotokatalis N/Tio2 pada Penjernihan Limbah Batik Tenun Ikat Kediri,” Cakra Kimia (Indonesian E - Journal of Applied Chemistry), vol. 8, no. 1, pp. 26–33, May 2020, [Online]. Available: https://ojs.unud.ac.id/index.php/cakra/article/view/62801.
[22] C. D. D. Sundari, R. F. Rahayu, and N. Windayani, “Sintesis dan Karakterisasi Nanostruktur Tembaga Oksida dengan Metode Hidrotermal,” Al Kimiya: Jurnal Ilmu Kimia Dan Terapan, vol. 5, no. 1, pp. 48–51, Dec. 2018, doi: 10.15575/ak.v5i1.3725.
Published
2024-05-30
How to Cite
CHARLENA, Charlena; SUGIARTI, Sri; ARDIANSYAH, Dila. Synthesis and Characterization of Copper(II) Oxide (CuO-NP) Nanoparticles using Chemical Precipitation Method. JURNAL KIMIA MULAWARMAN, [S.l.], v. 21, n. 2, p. 84-92, may 2024. ISSN 2476-9258. Available at: <https://jurnal.kimia.fmipa.unmul.ac.id/index.php/JKM/article/view/1260>. Date accessed: 07 oct. 2024. doi: https://doi.org/10.30872/jkm.v21i2.1260.
Section
Artikel