• Husna Syaima Program Studi S1 Kimia, Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mulawarman
  • Sahara Hamas Intifadhah Program Studi Fisika, Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mulawarman


This review aims to summarize the various types of Metal-Organic Frameworks (MOFs) and their utilization for hydrogen storage. MOFs have high surface area, flexibility, good stability and tunability, various active sites, and abundant raw materials. These characteristics make MOFs worthy of being considered as a new material in hydrogen storage applications. The potential for using MOFs is very broad because its properties can be determined from the choice of metal and linker. Hydrogen gas storage commonly requires high pressure tanks whereas in liquid form, it requires cryogenic temperatures due to its very low boiling point, the challenge is to synthesize MOF with high hydrogen adsorption capacity under mild conditions. Moreover, it is crucial to learn about the relationship among the pore volume and surface area of MOFs, physisorption of hydrogen, and adsorption condition.

coordination polymers, metal-organic frameworks, hydrogen, physisorption


Download data is not yet available.


1. Uzair Ali, M., Gong, Z., Ali, M. U., Asmi, F., dan Muhammad, R. (2020). CO2 emission, economic development, fossil fuel consumption and population density in India, Pakistan and Bangladesh: A panel investigation. International Journal of Finance & Economics, 27(1), 18-31.
2. Shet, S. P., Shanmuga Priya, S., Sudhakar, K., dan Tahir, M. (2021). A review on current trends in potential use of metal-organic framework for hydrogen storage. International Journal of Hydrogen Energy, 46(21), 11782-11803.
3. Abrar, I., Arora, T., dan Khandelwal, R. (2023). Bioalcohols as an alternative fuel for transportation: Cradle to Grave Analysis. Fuel Processing Technology, 242, 107646.
4. Gaidukova, O. S., Dorokhov, V. V., Misyura, S. Y., Morozov, V. S., Shlegel, N. E., dan Strizhak, P. A. (2023). Co-combustion of methane hydrate and conventional fuels. Fuel, 344, 128046.
5. Han, X., Si, T., Liu, Q., Zhu, F., Li, R., Chen, X., Liu, J., Sun, H., Zhao, J., Ling, H., Zhang, Q., dan Wang, H. (2021). 2D Bimetallic runi alloy co-catalysts remarkably enhanced the photocatalytic H2 evolution performance of G-C3N4 nanosheets. Chemical Engineering Journal, 426, 130824.
6. Zhao, J., Patwary, A. K., Qayyum, A., Alharthi, M., Bashir, F., Mohsin, M., Hanif, I., dan Abbas, Q. (2022). The determinants of renewable energy sources for the fueling of Green and sustainable economy. Energy, 238, 122029.
7. Soni, P. K., Bhatnagar, A., dan Shaz, M. A. (2023). Enhanced hydrogen properties of MGH2 by Fe nanoparticles loaded hollow carbon spheres. International Journal of Hydrogen Energy.
8. Brun, K., dan Allison,Timothy. (2022). Machinery and energy systems for the Hydrogen Economy. Elsevier.
9. Ulucan, T. H., Akhade, S. A., Ambalakatte, A., Autrey, T., Cairns, A., Chen, P., Cho, Y. W., Gallucci, F., Gao, W., Grinderslev, J. B., Grubel, K., Jensen, T. R., de Jongh, P. E., Kothandaraman, J., Lamb, K. E., Lee, Y.-S., Makhloufi, C., Ngene, P., Olivier, P., Webb, J.C., Wegman, B., Wood, B.C., dan Weidenthaler, C. (2023). Hydrogen storage in liquid hydrogen carriers: Recent activities and new trends. Progress in Energy, 5(1), 012004.
10. Alesaadi, S.J. dan Sabzi, F. (2014). Hydrogen storage in a series of Zn-based mofs studied by PHSC equation of State. International Journal of Hydrogen Energy, 39(27), 14851–14857.
11. Andersson, J., dan Grönkvist, S. (2019). Large-scale storage of hydrogen. International Journal of Hydrogen Energy, 44(23), 11901–11919.
12. Yousefi, R., Asgari, S., Banitalebi Dehkordi, A., Mohammadi Ziarani, G., Badiei, A., Mohajer, F., Varma, R. S., dan Iravani, S. (2023). MOF-based composites as photoluminescence sensing platforms for pesticides: Applications and mechanisms. Environmental Research, 226, 115664.
13. Mohtadi, R. dan Orimo, S.-ichi (2016). The renaissance of hydrides as Energy Materials. Nature Reviews Materials, 2(3).
14. Garg, A., Almáši, M., Rattan Paul, D., Poonia, E., Luthra, J. R., dan Sharma, A. (2021). Metal-organic framework MOF-76(ND): Synthesis, characterization, and study of hydrogen storage and humidity sensing. Frontiers in Energy Research, 8.
15. Shet, S. P., Shanmuga Priya, S., Sudhakar, K., dan Tahir, M. (2021). A review on current trends in potential use of metal-organic framework for hydrogen storage. International Journal of Hydrogen Energy, 46(21), 11782–11803.
16. Du, P. D., Thanh, H. T., To, T. C., Thang, H. S., Tinh, M. X., Tuyen, T. N., Hoa, T. T., dan Khieu, D. Q. (2019). Metal-organic framework MIL-101: Synthesis and photocatalytic degradation of Remazol Black B Dye. Journal of Nanomaterials, 2019, 1–15.
17. Raptopoulou, C.P. (2021). Metal-organic frameworks: Synthetic methods and potential applications. Materials, 14(2), 310.
18. Zhu, Z.W. dan Zheng, Q.R. (2023) “Investigation of cryo-adsorption hydrogen storage capacity of rapidly synthesized MOF-5 by Mechanochemical Method. International Journal of Hydrogen Energy, 48(13), 5166–5174.
19. Chen, L., Zhang, X., Cheng, X., Xie, Z., Kuang, Q., dan Zheng, L. (2020). The function of metal–organic frameworks in the application of MOF-based composites. Nanoscale Advances, 2(7), 2628–2647.
20. Mageto, T., de Souza, F. M., Kaur, J., Kumar, A., dan Gupta, R. K. (2023). Chemistry and potential candidature of metal-organic frameworks for Electrochemical Energy Storage Devices. Fuel Processing Technology, 242, 107659.
21. Li, R., Han, X., Liu, Q., Qian, A., Shen, H., Liu, J., Pu, X., Xu, H., dan Mu, B. (2022). Porous carbon materials with improved hydrogen storage capacity by carbonizing Zn(BDC)Ted0.5. Journal of Solid State Chemistry, 314, 123409.
22. Healy, C., Patil, K. M., Wilson, B. H., Hermanspahn, L., Harvey-Reid, N. C., Howard, B. I., Kleinjan, C., Kolien, J., Payet, F., Telfer, S. G., Kruger, P. E., dan Bennett, T. D. (2020). The thermal stability of metal-organic frameworks. Coordination Chemistry Reviews, 419, 213388.
23. Liu, S dan Shui, J. (2022). Mechanism and properties of emerging nanostructured hydrogen storage materials”. Willey: Battery Energy.
24. Wang, Y., Lan, Z., Huang, X., Liu, H., dan Guo, J. (2019). Study on catalytic effect and mechanism of MOF (MOF = ZIF-8, ZIF-67, MOF-74) on hydrogen storage properties of magnesium. Elsevier: Hydrogen Energy Publications.
25. Yap, MFAAH., Yahya, MS., Noratiqah, S., Ali, NA., Mustafa, NS., Sulaiman, NN., dan Ismail, M. (2021). Study of the Hydrogen Storage Properties and Catalytic Mechanism of a MgH2−Na3AlH6 System Incorporating FeCl3. ACS Omega 6, 18948−18956.
26. Feng, Y., Jiang, H., Chen, M., dan Wang, Y. (2013). Construction of an interpenetrated MOF-5 with high mesoporosity for hydrogen storage at low pressure. Powder Technology, 249, 38–42.
27. Wang, L., Stuckert, N.R., Chen, H., dan Yang, R.T.. (2011). Effects of Pt Particle Size on Hydrogen Storage on Pt-Doped Metal-Organic Framework IRMOF-8”. J. Phys. Chem. C, 115, 4793–4799.
28. Xia, L., Bo, Z., Liu, Q., Zhang, X., dan Pei, Y. (2019). Li-doped and functionalized metal-organic framework-519 for enhancing hydrogen storage: A computational study. Elsevier : Computational Materials Science, 166, 179–186.
29. Ren, J., Langmi, H. W., North, B. C., Mathe, M., dan Bessarabov, D. (2014). Modulated synthesis of zirconium-metal organic framework (ZR-MOF) for Hydrogen Storage Applications. International Journal of Hydrogen Energy, 39(2), 890–895.
30. Qin, W., Cao, W., Liu,H., Li, Z., dan Li, Y. (2014). Metal–organic framework MIL-101 doped with palladium for toluene adsorption and hydrogen storage. Journal The Royal Society of Chemistry, 4, 2414–2420.
31. Srivastava, S., Shet, S. P., Shanmuga Priya, S., Sudhakar, K., dan Tahir, M. (2022). Molecular simulation of copper based metal-organic framework (CU-MOF) for Hydrogen adsorption. International Journal of Hydrogen Energy, 47(35), 15820–15831.
How to Cite
SYAIMA, Husna; INTIFADHAH, Sahara Hamas. MINI-REVIEW MENGENAI PEMANFAATAN MATERIAL BERBASIS POLIMER KOORDINASI BERPORI UNTUK PENYIMPANAN HIDROGEN. JURNAL ATOMIK, [S.l.], v. 8, n. 2, p. 38-42, aug. 2023. ISSN 2549-0052. Available at: <>. Date accessed: 19 july 2024.